BEE-spoke-data/smol_llama-101M-GQA-GGUF
Quantized GGUF model files for smol_llama-101M-GQA from BEE-spoke-data
| Name | Quant method | Size |
|---|---|---|
| smol_llama-101m-gqa.fp16.gguf | fp16 | 203.28 MB |
| smol_llama-101m-gqa.q2_k.gguf | q2_k | 50.93 MB |
| smol_llama-101m-gqa.q3_k_m.gguf | q3_k_m | 57.06 MB |
| smol_llama-101m-gqa.q4_k_m.gguf | q4_k_m | 65.40 MB |
| smol_llama-101m-gqa.q5_k_m.gguf | q5_k_m | 74.34 MB |
| smol_llama-101m-gqa.q6_k.gguf | q6_k | 83.83 MB |
| smol_llama-101m-gqa.q8_0.gguf | q8_0 | 108.35 MB |
Original Model Card:
smol_llama-101M-GQA
A small 101M param (total) decoder model. This is the first version of the model.
- 768 hidden size, 6 layers
- GQA (24 heads, 8 key-value), context length 1024
- train-from-scratch
Notes
This checkpoint is the 'raw' pre-trained model and has not been tuned to a more specific task. It should be fine-tuned before use in most cases.
Checkpoints & Links
- smol-er 81M parameter checkpoint with in/out embeddings tied: here
- Fine-tuned on
pypito generate Python code - link - For the chat version of this model, please see here
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value |
|---|---|
| Avg. | 25.32 |
| ARC (25-shot) | 23.55 |
| HellaSwag (10-shot) | 28.77 |
| MMLU (5-shot) | 24.24 |
| TruthfulQA (0-shot) | 45.76 |
| Winogrande (5-shot) | 50.67 |
| GSM8K (5-shot) | 0.83 |
| DROP (3-shot) | 3.39 |
- Downloads last month
- 262
Hardware compatibility
Log In
to view the estimation
Model tree for afrideva/smol_llama-101M-GQA-GGUF
Base model
BEE-spoke-data/smol_llama-101M-GQA