CodeingAI / supercoder.py
Kai Izumoto
Upload supercoder.py with huggingface_hub
23acd44 verified
"""
SuperCoder - Unified Application
All-in-one file containing Gradio UI, API server, tunnel support, and AI logic.
"""
import os
import sys
import time
import uuid
import argparse
import subprocess
import traceback
import requests
import json
from pathlib import Path
from typing import Optional, List, Dict, Any, Generator, Tuple
from collections import defaultdict
from functools import partial
from multiprocessing import Process
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
# Import config (only external dependency)
from config import *
# ============================================================================
# SERVER MANAGER - llama.cpp server lifecycle
# ============================================================================
_server_process = None
_server_info = {}
def check_server_health() -> bool:
try:
# Check if Ollama is responding
response = requests.get(f"{LLAMA_SERVER_URL}/api/tags", timeout=2)
return response.status_code == 200 and len(response.json().get("models", [])) > 0
except:
return False
def start_llama_server() -> bool:
global _server_process, _server_info
if _server_process and check_server_health():
return True
print(f"\nπŸš€ Starting llama.cpp server on {LLAMA_SERVER_URL}")
try:
cmd = [
LLAMA_SERVER_PATH, "-hf", LLAMA_MODEL,
"-c", str(MODEL_CONTEXT_WINDOW),
"-t", str(MODEL_THREADS),
"-ngl", str(MODEL_GPU_LAYERS),
"--host", LLAMA_SERVER_HOST, "--port", str(LLAMA_SERVER_PORT)
]
_server_process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
_server_info = {'pid': _server_process.pid, 'url': LLAMA_SERVER_URL}
# Wait for ready
for _ in range(SERVER_STARTUP_TIMEOUT * 2):
if check_server_health():
print(f"βœ… Server ready (PID: {_server_process.pid})")
return True
time.sleep(0.5)
return False
except Exception as e:
print(f"❌ Server start failed: {e}")
return False
def stop_llama_server():
global _server_process
if _server_process:
_server_process.terminate()
_server_process.wait()
_server_process = None
def get_llm():
return True if check_server_health() else None
def get_model_info():
return _server_info.copy()
# ============================================================================
# SESSION MANAGER - Chat history
# ============================================================================
SESSION_STORE = {}
SESSION_METADATA = defaultdict(dict)
def get_session_id(request: gr.Request) -> str:
return request.session_hash
def get_history(session_id: str, create_if_missing: bool = False) -> List[Dict]:
if session_id not in SESSION_STORE and create_if_missing:
SESSION_STORE[session_id] = []
return SESSION_STORE.get(session_id, [])
def add_to_history(session_id: str, role: str, text: str):
history = get_history(session_id, create_if_missing=True)
history.append({"role": role, "text": text, "timestamp": time.time()})
def clear_history(session_id: str):
if session_id in SESSION_STORE:
SESSION_STORE[session_id] = []
def convert_history_to_gradio_messages(history: List[Dict]) -> List[Dict]:
return [{"role": msg["role"], "content": msg["text"]} for msg in history]
def calculate_safe_max_tokens(history: List[Dict], requested: int, max_context: int) -> int:
history_chars = sum(len(msg["text"]) for msg in history)
estimated_tokens = history_chars // 4
available = max_context - estimated_tokens - SYSTEM_OVERHEAD_TOKENS
return max(min(requested, available, SAFE_MAX_TOKENS_CAP), MIN_TOKENS)
def get_recent_history(session_id: str, max_messages: int = 10) -> List[Dict]:
history = get_history(session_id)
return history[-max_messages:] if len(history) > max_messages else history
def update_session_activity(session_id: str):
SESSION_METADATA[session_id]['last_activity'] = time.time()
# ============================================================================
# GENERATION - AI response generation
# ============================================================================
def generate_response_stream(session_id: str, user_message: str, max_tokens: int,
temperature: float, stream: bool = True) -> Generator[str, None, None]:
if not get_llm():
yield "⚠️ Server not running"
return
update_session_activity(session_id)
recent_history = get_recent_history(session_id, max_messages=6)
safe_tokens = calculate_safe_max_tokens(recent_history, max_tokens, MODEL_CONTEXT_WINDOW)
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
for msg in recent_history:
messages.append({"role": msg["role"], "content": msg["text"]})
messages.append({"role": "user", "content": user_message})
try:
payload = {
"messages": messages, "max_tokens": safe_tokens,
"temperature": max(0.01, temperature),
"top_p": DEFAULT_TOP_P, "stream": stream
}
if stream:
response = requests.post(f"{LLAMA_SERVER_URL}/v1/chat/completions",
json=payload, stream=True, timeout=300)
full_response = ""
for line in response.iter_lines():
if line:
line_text = line.decode('utf-8')
if line_text.startswith('data: '):
line_text = line_text[6:]
if line_text.strip() == '[DONE]':
break
try:
chunk = json.loads(line_text)
content = chunk.get("choices", [{}])[0].get("delta", {}).get("content", "")
if content:
full_response += content
yield full_response.strip()
except:
continue
else:
# Use Ollama API format instead of OpenAI format
ollama_payload = {
"model": LLAMA_MODEL,
"messages": messages,
"stream": False
}
response = requests.post(f"{LLAMA_SERVER_URL}/api/chat",
json=ollama_payload, timeout=300)
yield response.json()["message"]["content"].strip()
except Exception as e:
yield f"⚠️ Error: {str(e)}"
# ============================================================================
# GRADIO UI COMPONENTS
# ============================================================================
def create_gradio_interface(error_msg: Optional[str] = None):
with gr.Blocks(title=APP_TITLE, theme=gr.themes.Soft(primary_hue=PRIMARY_HUE)) as demo:
gr.Markdown(f"# πŸ€– {APP_TITLE}\n### {APP_DESCRIPTION}\n---")
if error_msg:
gr.Markdown(f"⚠️ {error_msg}")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="πŸ’¬ Conversation", height=CHAT_HEIGHT,
type="messages", show_copy_button=True)
with gr.Row():
txt_input = gr.Textbox(placeholder="Ask me about code...",
show_label=False, scale=5, lines=2)
send_btn = gr.Button("Send πŸš€", scale=1, variant="primary")
with gr.Column(scale=1):
gr.Markdown("### βš™οΈ Settings")
temp_slider = gr.Slider(0.0, 1.0, value=DEFAULT_TEMPERATURE, step=0.05,
label="🌑️ Temperature")
tokens_slider = gr.Slider(MIN_TOKENS, SAFE_MAX_TOKENS_CAP,
value=DEFAULT_MAX_TOKENS, step=128, label="πŸ“ Max Tokens")
stream_checkbox = gr.Checkbox(label="⚑ Stream", value=True)
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="stop", size="sm")
session_state = gr.State()
# Event handlers
def handle_message(session_id, msg, temp, tokens, stream, request: gr.Request):
session_id = session_id or get_session_id(request)
if not msg.strip():
return session_id, convert_history_to_gradio_messages(get_history(session_id)), ""
add_to_history(session_id, "user", msg)
yield session_id, convert_history_to_gradio_messages(get_history(session_id)), ""
full_response = ""
for partial in generate_response_stream(session_id, msg, tokens, temp, stream):
full_response = partial
temp_hist = get_history(session_id).copy()
temp_hist.append({"role": "assistant", "text": full_response})
yield session_id, convert_history_to_gradio_messages(temp_hist), ""
add_to_history(session_id, "assistant", full_response)
yield session_id, convert_history_to_gradio_messages(get_history(session_id)), ""
def handle_clear(session_id, request: gr.Request):
session_id = session_id or get_session_id(request)
clear_history(session_id)
return session_id, [], ""
txt_input.submit(handle_message, [session_state, txt_input, temp_slider, tokens_slider, stream_checkbox],
[session_state, chatbot, txt_input])
send_btn.click(handle_message, [session_state, txt_input, temp_slider, tokens_slider, stream_checkbox],
[session_state, chatbot, txt_input])
clear_btn.click(handle_clear, [session_state], [session_state, chatbot, txt_input])
return demo
# ============================================================================
# FASTAPI SERVER
# ============================================================================
api_app = FastAPI(title="SuperCoder API")
api_app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"])
api_sessions = {}
class ChatMessage(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[ChatMessage]
temperature: Optional[float] = 0.1
max_tokens: Optional[int] = 512
class ChatResponse(BaseModel):
response: str
session_id: str
@api_app.get("/health")
async def health():
return {"status": "ok" if get_llm() else "model_not_loaded"}
@api_app.post("/api/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
if not get_llm():
raise HTTPException(503, "Model not loaded")
session_id = str(uuid.uuid4())
api_sessions[session_id] = []
user_message = request.messages[-1].content
api_sessions[session_id].append({"role": "user", "text": user_message})
full_response = ""
for partial in generate_response_stream(session_id, user_message, request.max_tokens,
request.temperature, False):
full_response = partial
api_sessions[session_id].append({"role": "assistant", "text": full_response})
return ChatResponse(response=full_response, session_id=session_id)
def run_api_server():
uvicorn.run(api_app, host="0.0.0.0", port=8000, log_level="info")
# ============================================================================
# TUNNEL SUPPORT
# ============================================================================
def start_ngrok_tunnel(port: int = 8000) -> Optional[str]:
try:
subprocess.run(["which", "ngrok"], capture_output=True, check=True)
subprocess.Popen(["ngrok", "http", str(port)], stdout=subprocess.PIPE)
time.sleep(3)
response = requests.get("http://127.0.0.1:4040/api/tunnels", timeout=5)
tunnels = response.json()
if tunnels.get("tunnels"):
url = tunnels["tunnels"][0]["public_url"]
print(f"βœ… Tunnel: {url}")
return url
except:
print("❌ ngrok not found. Install: brew install ngrok")
return None
def start_cloudflare_tunnel(port: int = 8000) -> Optional[str]:
try:
subprocess.run(["which", "cloudflared"], capture_output=True, check=True)
proc = subprocess.Popen(["cloudflared", "tunnel", "--url", f"http://localhost:{port}"],
stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
time.sleep(3)
for _ in range(30):
line = proc.stdout.readline()
if "trycloudflare.com" in line:
import re
urls = re.findall(r'https://[^\s]+\.trycloudflare\.com', line)
if urls:
print(f"βœ… Tunnel: {urls[0]}")
return urls[0]
time.sleep(1)
except:
print("❌ cloudflared not found. Install: brew install cloudflared")
return None
# ============================================================================
# MAIN LAUNCHER
# ============================================================================
def main():
parser = argparse.ArgumentParser(description="SuperCoder - All-in-One AI Coding Assistant")
parser.add_argument("--mode", choices=["gradio", "api", "both"], default="gradio",
help="Run mode: gradio (UI), api (server), or both")
parser.add_argument("--tunnel", choices=["ngrok", "cloudflare"],
help="Start tunnel for public access")
parser.add_argument("--no-server", action="store_true",
help="Don't start llama.cpp server (assume already running)")
args = parser.parse_args()
print("╔════════════════════════════════════════════════╗")
print("β•‘ SuperCoder - Unified Launcher β•‘")
print("β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•")
# Start llama.cpp server
if not args.no_server:
success = start_llama_server()
error_msg = None if success else "Failed to start llama.cpp server"
else:
error_msg = None
# Run selected mode
if args.mode == "gradio":
print(f"\nπŸ“Œ Mode: Gradio UI\n🌐 Access: http://localhost:{SERVER_PORT}\n")
demo = create_gradio_interface(error_msg)
demo.launch(server_name=SERVER_NAME, server_port=SERVER_PORT)
elif args.mode == "api":
print(f"\nπŸ“Œ Mode: API Server\nπŸ“‘ API: http://localhost:8000/api/chat\n")
if args.tunnel:
api_proc = Process(target=run_api_server)
api_proc.start()
time.sleep(3)
if args.tunnel == "ngrok":
start_ngrok_tunnel(8000)
else:
start_cloudflare_tunnel(8000)
try:
api_proc.join()
except KeyboardInterrupt:
api_proc.terminate()
else:
run_api_server()
elif args.mode == "both":
print(f"\nπŸ“Œ Mode: Both Gradio + API\n🎨 UI: http://localhost:{SERVER_PORT}\nπŸ“‘ API: http://localhost:8000\n")
gradio_proc = Process(target=lambda: create_gradio_interface(error_msg).launch(
server_name=SERVER_NAME, server_port=SERVER_PORT))
api_proc = Process(target=run_api_server)
gradio_proc.start()
api_proc.start()
if args.tunnel:
time.sleep(3)
if args.tunnel == "ngrok":
start_ngrok_tunnel(8000)
else:
start_cloudflare_tunnel(8000)
try:
gradio_proc.join()
api_proc.join()
except KeyboardInterrupt:
gradio_proc.terminate()
api_proc.terminate()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nπŸ‘‹ Shutting down...")
stop_llama_server()