Upload stable_cascade.py
Browse files- stable_cascade.py +1623 -0
stable_cascade.py
ADDED
|
@@ -0,0 +1,1623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# コードは Stable Cascade からコピーし、一部修正しています。元ライセンスは MIT です。
|
| 2 |
+
# The code is copied from Stable Cascade and modified. The original license is MIT.
|
| 3 |
+
# https://github.com/Stability-AI/StableCascade
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
from types import SimpleNamespace
|
| 7 |
+
from typing import List, Optional
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
import torchvision
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def check_scale(tensor):
|
| 17 |
+
return torch.mean(torch.abs(tensor))
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# region VectorQuantize
|
| 21 |
+
|
| 22 |
+
# from torchtools https://github.com/pabloppp/pytorch-tools
|
| 23 |
+
# 依存ライブラリを増やしたくないのでここにコピペ
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class vector_quantize(torch.autograd.Function):
|
| 27 |
+
@staticmethod
|
| 28 |
+
def forward(ctx, x, codebook):
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
codebook_sqr = torch.sum(codebook**2, dim=1)
|
| 31 |
+
x_sqr = torch.sum(x**2, dim=1, keepdim=True)
|
| 32 |
+
|
| 33 |
+
dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
|
| 34 |
+
_, indices = dist.min(dim=1)
|
| 35 |
+
|
| 36 |
+
ctx.save_for_backward(indices, codebook)
|
| 37 |
+
ctx.mark_non_differentiable(indices)
|
| 38 |
+
|
| 39 |
+
nn = torch.index_select(codebook, 0, indices)
|
| 40 |
+
return nn, indices
|
| 41 |
+
|
| 42 |
+
@staticmethod
|
| 43 |
+
def backward(ctx, grad_output, grad_indices):
|
| 44 |
+
grad_inputs, grad_codebook = None, None
|
| 45 |
+
|
| 46 |
+
if ctx.needs_input_grad[0]:
|
| 47 |
+
grad_inputs = grad_output.clone()
|
| 48 |
+
if ctx.needs_input_grad[1]:
|
| 49 |
+
# Gradient wrt. the codebook
|
| 50 |
+
indices, codebook = ctx.saved_tensors
|
| 51 |
+
|
| 52 |
+
grad_codebook = torch.zeros_like(codebook)
|
| 53 |
+
grad_codebook.index_add_(0, indices, grad_output)
|
| 54 |
+
|
| 55 |
+
return (grad_inputs, grad_codebook)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class VectorQuantize(nn.Module):
|
| 59 |
+
def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
|
| 60 |
+
"""
|
| 61 |
+
Takes an input of variable size (as long as the last dimension matches the embedding size).
|
| 62 |
+
Returns one tensor containing the nearest neighbour embeddings to each of the inputs,
|
| 63 |
+
with the same size as the input, vq and commitment components for the loss as a tuple
|
| 64 |
+
in the second output and the indices of the quantized vectors in the third:
|
| 65 |
+
quantized, (vq_loss, commit_loss), indices
|
| 66 |
+
"""
|
| 67 |
+
super(VectorQuantize, self).__init__()
|
| 68 |
+
|
| 69 |
+
self.codebook = nn.Embedding(k, embedding_size)
|
| 70 |
+
self.codebook.weight.data.uniform_(-1.0 / k, 1.0 / k)
|
| 71 |
+
self.vq = vector_quantize.apply
|
| 72 |
+
|
| 73 |
+
self.ema_decay = ema_decay
|
| 74 |
+
self.ema_loss = ema_loss
|
| 75 |
+
if ema_loss:
|
| 76 |
+
self.register_buffer("ema_element_count", torch.ones(k))
|
| 77 |
+
self.register_buffer("ema_weight_sum", torch.zeros_like(self.codebook.weight))
|
| 78 |
+
|
| 79 |
+
def _laplace_smoothing(self, x, epsilon):
|
| 80 |
+
n = torch.sum(x)
|
| 81 |
+
return (x + epsilon) / (n + x.size(0) * epsilon) * n
|
| 82 |
+
|
| 83 |
+
def _updateEMA(self, z_e_x, indices):
|
| 84 |
+
mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
|
| 85 |
+
elem_count = mask.sum(dim=0)
|
| 86 |
+
weight_sum = torch.mm(mask.t(), z_e_x)
|
| 87 |
+
|
| 88 |
+
self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1 - self.ema_decay) * elem_count)
|
| 89 |
+
self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
|
| 90 |
+
self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1 - self.ema_decay) * weight_sum)
|
| 91 |
+
|
| 92 |
+
self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
|
| 93 |
+
|
| 94 |
+
def idx2vq(self, idx, dim=-1):
|
| 95 |
+
q_idx = self.codebook(idx)
|
| 96 |
+
if dim != -1:
|
| 97 |
+
q_idx = q_idx.movedim(-1, dim)
|
| 98 |
+
return q_idx
|
| 99 |
+
|
| 100 |
+
def forward(self, x, get_losses=True, dim=-1):
|
| 101 |
+
if dim != -1:
|
| 102 |
+
x = x.movedim(dim, -1)
|
| 103 |
+
z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
|
| 104 |
+
z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
|
| 105 |
+
vq_loss, commit_loss = None, None
|
| 106 |
+
if self.ema_loss and self.training:
|
| 107 |
+
self._updateEMA(z_e_x.detach(), indices.detach())
|
| 108 |
+
# pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
|
| 109 |
+
z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
|
| 110 |
+
if get_losses:
|
| 111 |
+
vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
|
| 112 |
+
commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
|
| 113 |
+
|
| 114 |
+
z_q_x = z_q_x.view(x.shape)
|
| 115 |
+
if dim != -1:
|
| 116 |
+
z_q_x = z_q_x.movedim(-1, dim)
|
| 117 |
+
return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# endregion
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class EfficientNetEncoder(nn.Module):
|
| 124 |
+
def __init__(self, c_latent=16):
|
| 125 |
+
super().__init__()
|
| 126 |
+
self.backbone = torchvision.models.efficientnet_v2_s(weights="DEFAULT").features.eval()
|
| 127 |
+
self.mapper = nn.Sequential(
|
| 128 |
+
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
| 129 |
+
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
def forward(self, x):
|
| 133 |
+
return self.mapper(self.backbone(x))
|
| 134 |
+
|
| 135 |
+
@property
|
| 136 |
+
def dtype(self) -> torch.dtype:
|
| 137 |
+
return next(self.parameters()).dtype
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def device(self) -> torch.device:
|
| 141 |
+
return next(self.parameters()).device
|
| 142 |
+
|
| 143 |
+
def encode(self, x):
|
| 144 |
+
"""
|
| 145 |
+
VAE と同じように使えるようにするためのメソッド。正しくはちゃんと呼び出し側で分けるべきだが、暫定的な対応。
|
| 146 |
+
The method to make it usable like VAE. It should be separated properly, but it is a temporary response.
|
| 147 |
+
"""
|
| 148 |
+
# latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")
|
| 149 |
+
x = self(x)
|
| 150 |
+
return SimpleNamespace(latent_dist=SimpleNamespace(sample=lambda: x))
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# なんかわりと乱暴な実装(;'∀')
|
| 154 |
+
# 一から学習することもないだろうから、無効化しておく
|
| 155 |
+
|
| 156 |
+
# class Linear(torch.nn.Linear):
|
| 157 |
+
# def reset_parameters(self):
|
| 158 |
+
# return None
|
| 159 |
+
|
| 160 |
+
# class Conv2d(torch.nn.Conv2d):
|
| 161 |
+
# def reset_parameters(self):
|
| 162 |
+
# return None
|
| 163 |
+
|
| 164 |
+
from torch.nn import Conv2d
|
| 165 |
+
from torch.nn import Linear
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class Attention2D(nn.Module):
|
| 169 |
+
def __init__(self, c, nhead, dropout=0.0):
|
| 170 |
+
super().__init__()
|
| 171 |
+
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)
|
| 172 |
+
|
| 173 |
+
def forward(self, x, kv, self_attn=False):
|
| 174 |
+
orig_shape = x.shape
|
| 175 |
+
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
|
| 176 |
+
if self_attn:
|
| 177 |
+
kv = torch.cat([x, kv], dim=1)
|
| 178 |
+
x = self.attn(x, kv, kv, need_weights=False)[0]
|
| 179 |
+
x = x.permute(0, 2, 1).view(*orig_shape)
|
| 180 |
+
return x
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class LayerNorm2d(nn.LayerNorm):
|
| 184 |
+
def __init__(self, *args, **kwargs):
|
| 185 |
+
super().__init__(*args, **kwargs)
|
| 186 |
+
|
| 187 |
+
def forward(self, x):
|
| 188 |
+
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class GlobalResponseNorm(nn.Module):
|
| 192 |
+
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
| 193 |
+
|
| 194 |
+
def __init__(self, dim):
|
| 195 |
+
super().__init__()
|
| 196 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
| 197 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
| 198 |
+
|
| 199 |
+
def forward(self, x):
|
| 200 |
+
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
| 201 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
| 202 |
+
return self.gamma * (x * Nx) + self.beta + x
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
class ResBlock(nn.Module):
|
| 206 |
+
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): # , num_heads=4, expansion=2):
|
| 207 |
+
super().__init__()
|
| 208 |
+
self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
|
| 209 |
+
# self.depthwise = SAMBlock(c, num_heads, expansion)
|
| 210 |
+
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
|
| 211 |
+
self.channelwise = nn.Sequential(
|
| 212 |
+
Linear(c + c_skip, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c)
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
self.gradient_checkpointing = False
|
| 216 |
+
self.factor = 1
|
| 217 |
+
|
| 218 |
+
def set_factor(self, k):
|
| 219 |
+
if self.factor!=1:
|
| 220 |
+
return
|
| 221 |
+
self.factor = k
|
| 222 |
+
self.depthwise.bias.data /= k
|
| 223 |
+
self.channelwise[4].weight.data /= k
|
| 224 |
+
self.channelwise[4].bias.data /= k
|
| 225 |
+
|
| 226 |
+
def set_gradient_checkpointing(self, value):
|
| 227 |
+
self.gradient_checkpointing = value
|
| 228 |
+
|
| 229 |
+
def forward_body(self, x, x_skip=None):
|
| 230 |
+
x_res = x
|
| 231 |
+
#x = x /self.factor
|
| 232 |
+
x = self.depthwise(x)
|
| 233 |
+
x = self.norm(x)
|
| 234 |
+
# if torch.any(torch.isnan(x)):
|
| 235 |
+
#print("nan in first norm")
|
| 236 |
+
if x_skip is not None:
|
| 237 |
+
x = torch.cat([x, x_skip], dim=1)
|
| 238 |
+
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)# * self.factor
|
| 239 |
+
# if torch.any(torch.isnan(x)):
|
| 240 |
+
#print("nan in second norm")
|
| 241 |
+
# result = x + x_res
|
| 242 |
+
# if check_scale(x) > 5:
|
| 243 |
+
# self.scale = 0.1
|
| 244 |
+
return x+ x_res
|
| 245 |
+
|
| 246 |
+
def forward(self, x, x_skip=None):
|
| 247 |
+
# if self.factor > 1:
|
| 248 |
+
#print("ResBlock: factor > 1")
|
| 249 |
+
if self.training and self.gradient_checkpointing:
|
| 250 |
+
# logger.info("ResnetBlock2D: gradient_checkpointing")
|
| 251 |
+
|
| 252 |
+
def create_custom_forward(func):
|
| 253 |
+
def custom_forward(*inputs):
|
| 254 |
+
return func(*inputs)
|
| 255 |
+
|
| 256 |
+
return custom_forward
|
| 257 |
+
|
| 258 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, x_skip)
|
| 259 |
+
else:
|
| 260 |
+
x = self.forward_body(x, x_skip)
|
| 261 |
+
|
| 262 |
+
return x
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class AttnBlock(nn.Module):
|
| 266 |
+
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
|
| 267 |
+
super().__init__()
|
| 268 |
+
self.self_attn = self_attn
|
| 269 |
+
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
|
| 270 |
+
self.attention = Attention2D(c, nhead, dropout)
|
| 271 |
+
self.kv_mapper = nn.Sequential(nn.SiLU(), Linear(c_cond, c))
|
| 272 |
+
|
| 273 |
+
self.gradient_checkpointing = False
|
| 274 |
+
self.factor = 1
|
| 275 |
+
|
| 276 |
+
def set_factor(self, k):
|
| 277 |
+
if self.factor!=1:
|
| 278 |
+
return
|
| 279 |
+
self.factor = k
|
| 280 |
+
self.attention.attn.out_proj.weight.data /= k
|
| 281 |
+
if self.attention.attn.out_proj.bias is not None:
|
| 282 |
+
self.attention.attn.out_proj.bias.data /= k
|
| 283 |
+
|
| 284 |
+
def set_gradient_checkpointing(self, value):
|
| 285 |
+
self.gradient_checkpointing = value
|
| 286 |
+
|
| 287 |
+
def forward_body(self, x, kv):
|
| 288 |
+
kv = self.kv_mapper(kv)
|
| 289 |
+
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) #* self.factor
|
| 290 |
+
return x
|
| 291 |
+
|
| 292 |
+
def forward(self, x, kv):
|
| 293 |
+
# if self.factor > 1:
|
| 294 |
+
#print("AttnBlock: factor > 1")
|
| 295 |
+
if self.training and self.gradient_checkpointing:
|
| 296 |
+
# logger.info("AttnBlock: gradient_checkpointing")
|
| 297 |
+
|
| 298 |
+
def create_custom_forward(func):
|
| 299 |
+
def custom_forward(*inputs):
|
| 300 |
+
return func(*inputs)
|
| 301 |
+
|
| 302 |
+
return custom_forward
|
| 303 |
+
|
| 304 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, kv)
|
| 305 |
+
else:
|
| 306 |
+
x = self.forward_body(x, kv)
|
| 307 |
+
|
| 308 |
+
return x
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
class FeedForwardBlock(nn.Module):
|
| 312 |
+
def __init__(self, c, dropout=0.0):
|
| 313 |
+
super().__init__()
|
| 314 |
+
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
|
| 315 |
+
self.channelwise = nn.Sequential(
|
| 316 |
+
Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c)
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
self.gradient_checkpointing = False
|
| 320 |
+
|
| 321 |
+
def set_gradient_checkpointing(self, value):
|
| 322 |
+
self.gradient_checkpointing = value
|
| 323 |
+
|
| 324 |
+
def forward_body(self, x):
|
| 325 |
+
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
| 326 |
+
return x
|
| 327 |
+
|
| 328 |
+
def forward(self, x):
|
| 329 |
+
if self.training and self.gradient_checkpointing:
|
| 330 |
+
# logger.info("FeedForwardBlock: gradient_checkpointing")
|
| 331 |
+
|
| 332 |
+
def create_custom_forward(func):
|
| 333 |
+
def custom_forward(*inputs):
|
| 334 |
+
return func(*inputs)
|
| 335 |
+
|
| 336 |
+
return custom_forward
|
| 337 |
+
|
| 338 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x)
|
| 339 |
+
else:
|
| 340 |
+
x = self.forward_body(x)
|
| 341 |
+
|
| 342 |
+
return x
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class TimestepBlock(nn.Module):
|
| 346 |
+
def __init__(self, c, c_timestep, conds=["sca"]):
|
| 347 |
+
super().__init__()
|
| 348 |
+
self.mapper = Linear(c_timestep, c * 2)
|
| 349 |
+
self.conds = conds
|
| 350 |
+
for cname in conds:
|
| 351 |
+
setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2))
|
| 352 |
+
self.factor = 1
|
| 353 |
+
|
| 354 |
+
def set_factor(self, k, ext_k):
|
| 355 |
+
if self.factor!=1:
|
| 356 |
+
return
|
| 357 |
+
#print(f"TimestepBlock: factor = {k}, ext_k = {ext_k}")
|
| 358 |
+
self.factor = k
|
| 359 |
+
k_factor = k/ext_k
|
| 360 |
+
a_weight_factor = 1/k_factor
|
| 361 |
+
b_weight_factor = 1/k
|
| 362 |
+
a_bias_offset = - ((k_factor - 1)/(k_factor))/(len(self.conds) + 1)
|
| 363 |
+
|
| 364 |
+
for module in [self.mapper, *(getattr(self, f"mapper_{cname}") for cname in self.conds)]:
|
| 365 |
+
a_bias, b_bias = module.bias.data.chunk(2, dim=0)
|
| 366 |
+
a_weight, b_weight = module.weight.data.chunk(2, dim=0)
|
| 367 |
+
module.weight.data.copy_(
|
| 368 |
+
torch.concat([
|
| 369 |
+
a_weight * a_weight_factor,
|
| 370 |
+
b_weight * b_weight_factor
|
| 371 |
+
])
|
| 372 |
+
)
|
| 373 |
+
module.bias.data.copy_(
|
| 374 |
+
torch.concat([
|
| 375 |
+
a_bias * a_weight_factor + a_bias_offset,
|
| 376 |
+
b_bias * b_weight_factor
|
| 377 |
+
])
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
def forward(self, x, t):
|
| 381 |
+
# if self.factor > 1:
|
| 382 |
+
#print("TimestepBlock: factor > 1")
|
| 383 |
+
t = t.chunk(len(self.conds) + 1, dim=1)
|
| 384 |
+
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
|
| 385 |
+
for i, c in enumerate(self.conds):
|
| 386 |
+
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
|
| 387 |
+
a, b = a + ac, b + bc
|
| 388 |
+
return (x * (1 + a) + b) # * self.factor
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class UpDownBlock2d(nn.Module):
|
| 392 |
+
def __init__(self, c_in, c_out, mode, enabled=True):
|
| 393 |
+
super().__init__()
|
| 394 |
+
assert mode in ["up", "down"]
|
| 395 |
+
interpolation = (
|
| 396 |
+
nn.Upsample(scale_factor=2 if mode == "up" else 0.5, mode="bilinear", align_corners=True) if enabled else nn.Identity()
|
| 397 |
+
)
|
| 398 |
+
mapping = nn.Conv2d(c_in, c_out, kernel_size=1)
|
| 399 |
+
self.blocks = nn.ModuleList([interpolation, mapping] if mode == "up" else [mapping, interpolation])
|
| 400 |
+
|
| 401 |
+
self.mode = mode
|
| 402 |
+
|
| 403 |
+
self.gradient_checkpointing = False
|
| 404 |
+
|
| 405 |
+
def set_gradient_checkpointing(self, value):
|
| 406 |
+
self.gradient_checkpointing = value
|
| 407 |
+
|
| 408 |
+
def forward_body(self, x):
|
| 409 |
+
org_dtype = x.dtype
|
| 410 |
+
for i, block in enumerate(self.blocks):
|
| 411 |
+
# 公式の実装では、常に float で計算しているが、すこしでもメモリを節約するために bfloat16 + Upsample のみ float に変換する
|
| 412 |
+
# In the official implementation, it always calculates in float, but for the sake of saving memory, it converts to float only for bfloat16 + Upsample
|
| 413 |
+
if x.dtype == torch.bfloat16 and (self.mode == "up" and i == 0 or self.mode != "up" and i == 1):
|
| 414 |
+
x = x.float()
|
| 415 |
+
x = block(x)
|
| 416 |
+
x = x.to(org_dtype)
|
| 417 |
+
return x
|
| 418 |
+
|
| 419 |
+
def forward(self, x):
|
| 420 |
+
if self.training and self.gradient_checkpointing:
|
| 421 |
+
# logger.info("UpDownBlock2d: gradient_checkpointing")
|
| 422 |
+
|
| 423 |
+
def create_custom_forward(func):
|
| 424 |
+
def custom_forward(*inputs):
|
| 425 |
+
return func(*inputs)
|
| 426 |
+
|
| 427 |
+
return custom_forward
|
| 428 |
+
|
| 429 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x)
|
| 430 |
+
else:
|
| 431 |
+
x = self.forward_body(x)
|
| 432 |
+
|
| 433 |
+
return x
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
class StageAResBlock(nn.Module):
|
| 437 |
+
def __init__(self, c, c_hidden):
|
| 438 |
+
super().__init__()
|
| 439 |
+
# depthwise/attention
|
| 440 |
+
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
| 441 |
+
self.depthwise = nn.Sequential(nn.ReplicationPad2d(1), nn.Conv2d(c, c, kernel_size=3, groups=c))
|
| 442 |
+
|
| 443 |
+
# channelwise
|
| 444 |
+
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
| 445 |
+
self.channelwise = nn.Sequential(
|
| 446 |
+
nn.Linear(c, c_hidden),
|
| 447 |
+
nn.GELU(),
|
| 448 |
+
nn.Linear(c_hidden, c),
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
|
| 452 |
+
|
| 453 |
+
# Init weights
|
| 454 |
+
def _basic_init(module):
|
| 455 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
| 456 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 457 |
+
if module.bias is not None:
|
| 458 |
+
nn.init.constant_(module.bias, 0)
|
| 459 |
+
|
| 460 |
+
self.apply(_basic_init)
|
| 461 |
+
|
| 462 |
+
def _norm(self, x, norm):
|
| 463 |
+
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
| 464 |
+
|
| 465 |
+
def forward(self, x):
|
| 466 |
+
mods = self.gammas
|
| 467 |
+
|
| 468 |
+
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
|
| 469 |
+
x = x + self.depthwise(x_temp) * mods[2]
|
| 470 |
+
|
| 471 |
+
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
|
| 472 |
+
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
|
| 473 |
+
|
| 474 |
+
return x
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
class StageA(nn.Module):
|
| 478 |
+
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192, scale_factor=0.43): # 0.3764
|
| 479 |
+
super().__init__()
|
| 480 |
+
self.c_latent = c_latent
|
| 481 |
+
self.scale_factor = scale_factor
|
| 482 |
+
c_levels = [c_hidden // (2**i) for i in reversed(range(levels))]
|
| 483 |
+
|
| 484 |
+
# Encoder blocks
|
| 485 |
+
self.in_block = nn.Sequential(nn.PixelUnshuffle(2), nn.Conv2d(3 * 4, c_levels[0], kernel_size=1))
|
| 486 |
+
down_blocks = []
|
| 487 |
+
for i in range(levels):
|
| 488 |
+
if i > 0:
|
| 489 |
+
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
| 490 |
+
block = StageAResBlock(c_levels[i], c_levels[i] * 4)
|
| 491 |
+
down_blocks.append(block)
|
| 492 |
+
down_blocks.append(
|
| 493 |
+
nn.Sequential(
|
| 494 |
+
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
| 495 |
+
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
|
| 496 |
+
)
|
| 497 |
+
)
|
| 498 |
+
self.down_blocks = nn.Sequential(*down_blocks)
|
| 499 |
+
self.down_blocks[0]
|
| 500 |
+
|
| 501 |
+
self.codebook_size = codebook_size
|
| 502 |
+
self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
|
| 503 |
+
|
| 504 |
+
# Decoder blocks
|
| 505 |
+
up_blocks = [nn.Sequential(nn.Conv2d(c_latent, c_levels[-1], kernel_size=1))]
|
| 506 |
+
for i in range(levels):
|
| 507 |
+
for j in range(bottleneck_blocks if i == 0 else 1):
|
| 508 |
+
block = StageAResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
|
| 509 |
+
up_blocks.append(block)
|
| 510 |
+
if i < levels - 1:
|
| 511 |
+
up_blocks.append(
|
| 512 |
+
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1)
|
| 513 |
+
)
|
| 514 |
+
self.up_blocks = nn.Sequential(*up_blocks)
|
| 515 |
+
self.out_block = nn.Sequential(
|
| 516 |
+
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
| 517 |
+
nn.PixelShuffle(2),
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
def encode(self, x, quantize=False):
|
| 521 |
+
x = self.in_block(x)
|
| 522 |
+
x = self.down_blocks(x)
|
| 523 |
+
if quantize:
|
| 524 |
+
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
|
| 525 |
+
return qe / self.scale_factor, x / self.scale_factor, indices, vq_loss + commit_loss * 0.25
|
| 526 |
+
else:
|
| 527 |
+
return x / self.scale_factor, None, None, None
|
| 528 |
+
|
| 529 |
+
def decode(self, x):
|
| 530 |
+
x = x * self.scale_factor
|
| 531 |
+
x = self.up_blocks(x)
|
| 532 |
+
x = self.out_block(x)
|
| 533 |
+
return x
|
| 534 |
+
|
| 535 |
+
def forward(self, x, quantize=False):
|
| 536 |
+
qe, x, _, vq_loss = self.encode(x, quantize)
|
| 537 |
+
x = self.decode(qe)
|
| 538 |
+
return x, vq_loss
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
r"""
|
| 542 |
+
|
| 543 |
+
https://github.com/Stability-AI/StableCascade/blob/master/configs/inference/stage_b_3b.yaml
|
| 544 |
+
|
| 545 |
+
# GLOBAL STUFF
|
| 546 |
+
model_version: 3B
|
| 547 |
+
dtype: bfloat16
|
| 548 |
+
|
| 549 |
+
# For demonstration purposes in reconstruct_images.ipynb
|
| 550 |
+
webdataset_path: file:inference/imagenet_1024.tar
|
| 551 |
+
batch_size: 4
|
| 552 |
+
image_size: 1024
|
| 553 |
+
grad_accum_steps: 1
|
| 554 |
+
|
| 555 |
+
effnet_checkpoint_path: models/effnet_encoder.safetensors
|
| 556 |
+
stage_a_checkpoint_path: models/stage_a.safetensors
|
| 557 |
+
generator_checkpoint_path: models/stage_b_bf16.safetensors
|
| 558 |
+
"""
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
class StageB(nn.Module):
|
| 562 |
+
def __init__(
|
| 563 |
+
self,
|
| 564 |
+
c_in=4,
|
| 565 |
+
c_out=4,
|
| 566 |
+
c_r=64,
|
| 567 |
+
patch_size=2,
|
| 568 |
+
c_cond=1280,
|
| 569 |
+
c_hidden=[320, 640, 1280, 1280],
|
| 570 |
+
nhead=[-1, -1, 20, 20],
|
| 571 |
+
blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
|
| 572 |
+
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]],
|
| 573 |
+
level_config=["CT", "CT", "CTA", "CTA"],
|
| 574 |
+
c_clip=1280,
|
| 575 |
+
c_clip_seq=4,
|
| 576 |
+
c_effnet=16,
|
| 577 |
+
c_pixels=3,
|
| 578 |
+
kernel_size=3,
|
| 579 |
+
dropout=[0, 0, 0.1, 0.1],
|
| 580 |
+
self_attn=True,
|
| 581 |
+
t_conds=["sca"],
|
| 582 |
+
):
|
| 583 |
+
super().__init__()
|
| 584 |
+
self.c_r = c_r
|
| 585 |
+
self.t_conds = t_conds
|
| 586 |
+
self.c_clip_seq = c_clip_seq
|
| 587 |
+
if not isinstance(dropout, list):
|
| 588 |
+
dropout = [dropout] * len(c_hidden)
|
| 589 |
+
if not isinstance(self_attn, list):
|
| 590 |
+
self_attn = [self_attn] * len(c_hidden)
|
| 591 |
+
|
| 592 |
+
# CONDITIONING
|
| 593 |
+
self.effnet_mapper = nn.Sequential(
|
| 594 |
+
nn.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1),
|
| 595 |
+
nn.GELU(),
|
| 596 |
+
nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1),
|
| 597 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
| 598 |
+
)
|
| 599 |
+
self.pixels_mapper = nn.Sequential(
|
| 600 |
+
nn.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1),
|
| 601 |
+
nn.GELU(),
|
| 602 |
+
nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1),
|
| 603 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
| 604 |
+
)
|
| 605 |
+
self.clip_mapper = nn.Linear(c_clip, c_cond * c_clip_seq)
|
| 606 |
+
self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)
|
| 607 |
+
|
| 608 |
+
self.embedding = nn.Sequential(
|
| 609 |
+
nn.PixelUnshuffle(patch_size),
|
| 610 |
+
nn.Conv2d(c_in * (patch_size**2), c_hidden[0], kernel_size=1),
|
| 611 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
| 612 |
+
)
|
| 613 |
+
|
| 614 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
| 615 |
+
if block_type == "C":
|
| 616 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
|
| 617 |
+
elif block_type == "A":
|
| 618 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
|
| 619 |
+
elif block_type == "F":
|
| 620 |
+
return FeedForwardBlock(c_hidden, dropout=dropout)
|
| 621 |
+
elif block_type == "T":
|
| 622 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds)
|
| 623 |
+
else:
|
| 624 |
+
raise Exception(f"Block type {block_type} not supported")
|
| 625 |
+
|
| 626 |
+
# BLOCKS
|
| 627 |
+
# -- down blocks
|
| 628 |
+
self.down_blocks = nn.ModuleList()
|
| 629 |
+
self.down_downscalers = nn.ModuleList()
|
| 630 |
+
self.down_repeat_mappers = nn.ModuleList()
|
| 631 |
+
for i in range(len(c_hidden)):
|
| 632 |
+
if i > 0:
|
| 633 |
+
self.down_downscalers.append(
|
| 634 |
+
nn.Sequential(
|
| 635 |
+
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
|
| 636 |
+
nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2),
|
| 637 |
+
)
|
| 638 |
+
)
|
| 639 |
+
else:
|
| 640 |
+
self.down_downscalers.append(nn.Identity())
|
| 641 |
+
down_block = nn.ModuleList()
|
| 642 |
+
for _ in range(blocks[0][i]):
|
| 643 |
+
for block_type in level_config[i]:
|
| 644 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
| 645 |
+
down_block.append(block)
|
| 646 |
+
self.down_blocks.append(down_block)
|
| 647 |
+
if block_repeat is not None:
|
| 648 |
+
block_repeat_mappers = nn.ModuleList()
|
| 649 |
+
for _ in range(block_repeat[0][i] - 1):
|
| 650 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
| 651 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
| 652 |
+
|
| 653 |
+
# -- up blocks
|
| 654 |
+
self.up_blocks = nn.ModuleList()
|
| 655 |
+
self.up_upscalers = nn.ModuleList()
|
| 656 |
+
self.up_repeat_mappers = nn.ModuleList()
|
| 657 |
+
for i in reversed(range(len(c_hidden))):
|
| 658 |
+
if i > 0:
|
| 659 |
+
self.up_upscalers.append(
|
| 660 |
+
nn.Sequential(
|
| 661 |
+
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
|
| 662 |
+
nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2),
|
| 663 |
+
)
|
| 664 |
+
)
|
| 665 |
+
else:
|
| 666 |
+
self.up_upscalers.append(nn.Identity())
|
| 667 |
+
up_block = nn.ModuleList()
|
| 668 |
+
for j in range(blocks[1][::-1][i]):
|
| 669 |
+
for k, block_type in enumerate(level_config[i]):
|
| 670 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
| 671 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], self_attn=self_attn[i])
|
| 672 |
+
up_block.append(block)
|
| 673 |
+
self.up_blocks.append(up_block)
|
| 674 |
+
if block_repeat is not None:
|
| 675 |
+
block_repeat_mappers = nn.ModuleList()
|
| 676 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
| 677 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
| 678 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
| 679 |
+
|
| 680 |
+
# OUTPUT
|
| 681 |
+
self.clf = nn.Sequential(
|
| 682 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
| 683 |
+
nn.Conv2d(c_hidden[0], c_out * (patch_size**2), kernel_size=1),
|
| 684 |
+
nn.PixelShuffle(patch_size),
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
# --- WEIGHT INIT ---
|
| 688 |
+
self.apply(self._init_weights) # General init
|
| 689 |
+
nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
|
| 690 |
+
nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
|
| 691 |
+
nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
|
| 692 |
+
nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
|
| 693 |
+
nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
|
| 694 |
+
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
| 695 |
+
nn.init.constant_(self.clf[1].weight, 0) # outputs
|
| 696 |
+
|
| 697 |
+
# blocks
|
| 698 |
+
for level_block in self.down_blocks + self.up_blocks:
|
| 699 |
+
for block in level_block:
|
| 700 |
+
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
| 701 |
+
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
| 702 |
+
elif isinstance(block, TimestepBlock):
|
| 703 |
+
for layer in block.modules():
|
| 704 |
+
if isinstance(layer, nn.Linear):
|
| 705 |
+
nn.init.constant_(layer.weight, 0)
|
| 706 |
+
|
| 707 |
+
def _init_weights(self, m):
|
| 708 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
| 709 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
| 710 |
+
if m.bias is not None:
|
| 711 |
+
nn.init.constant_(m.bias, 0)
|
| 712 |
+
|
| 713 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
| 714 |
+
r = r * max_positions
|
| 715 |
+
half_dim = self.c_r // 2
|
| 716 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
| 717 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
| 718 |
+
emb = r[:, None] * emb[None, :]
|
| 719 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
| 720 |
+
if self.c_r % 2 == 1: # zero pad
|
| 721 |
+
emb = nn.functional.pad(emb, (0, 1), mode="constant")
|
| 722 |
+
return emb
|
| 723 |
+
|
| 724 |
+
def gen_c_embeddings(self, clip):
|
| 725 |
+
if len(clip.shape) == 2:
|
| 726 |
+
clip = clip.unsqueeze(1)
|
| 727 |
+
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
|
| 728 |
+
clip = self.clip_norm(clip)
|
| 729 |
+
return clip
|
| 730 |
+
|
| 731 |
+
def _down_encode(self, x, r_embed, clip):
|
| 732 |
+
level_outputs = []
|
| 733 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
| 734 |
+
for down_block, downscaler, repmap in block_group:
|
| 735 |
+
x = downscaler(x)
|
| 736 |
+
for i in range(len(repmap) + 1):
|
| 737 |
+
for block in down_block:
|
| 738 |
+
if isinstance(block, ResBlock) or (
|
| 739 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
| 740 |
+
):
|
| 741 |
+
x = block(x)
|
| 742 |
+
elif isinstance(block, AttnBlock) or (
|
| 743 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
| 744 |
+
):
|
| 745 |
+
x = block(x, clip)
|
| 746 |
+
elif isinstance(block, TimestepBlock) or (
|
| 747 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
| 748 |
+
):
|
| 749 |
+
x = block(x, r_embed)
|
| 750 |
+
else:
|
| 751 |
+
x = block(x)
|
| 752 |
+
if i < len(repmap):
|
| 753 |
+
x = repmap[i](x)
|
| 754 |
+
level_outputs.insert(0, x)
|
| 755 |
+
return level_outputs
|
| 756 |
+
|
| 757 |
+
def _up_decode(self, level_outputs, r_embed, clip):
|
| 758 |
+
x = level_outputs[0]
|
| 759 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
| 760 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
| 761 |
+
for j in range(len(repmap) + 1):
|
| 762 |
+
for k, block in enumerate(up_block):
|
| 763 |
+
if isinstance(block, ResBlock) or (
|
| 764 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
| 765 |
+
):
|
| 766 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
| 767 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
| 768 |
+
x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode="bilinear", align_corners=True)
|
| 769 |
+
x = block(x, skip)
|
| 770 |
+
elif isinstance(block, AttnBlock) or (
|
| 771 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
| 772 |
+
):
|
| 773 |
+
x = block(x, clip)
|
| 774 |
+
elif isinstance(block, TimestepBlock) or (
|
| 775 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
| 776 |
+
):
|
| 777 |
+
x = block(x, r_embed)
|
| 778 |
+
else:
|
| 779 |
+
x = block(x)
|
| 780 |
+
if j < len(repmap):
|
| 781 |
+
x = repmap[j](x)
|
| 782 |
+
x = upscaler(x)
|
| 783 |
+
return x
|
| 784 |
+
|
| 785 |
+
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
|
| 786 |
+
if pixels is None:
|
| 787 |
+
pixels = x.new_zeros(x.size(0), 3, 8, 8)
|
| 788 |
+
|
| 789 |
+
# Process the conditioning embeddings
|
| 790 |
+
r_embed = self.gen_r_embedding(r)
|
| 791 |
+
for c in self.t_conds:
|
| 792 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
| 793 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1)
|
| 794 |
+
clip = self.gen_c_embeddings(clip)
|
| 795 |
+
|
| 796 |
+
# Model Blocks
|
| 797 |
+
x = self.embedding(x)
|
| 798 |
+
x = x + self.effnet_mapper(
|
| 799 |
+
nn.functional.interpolate(effnet.float(), size=x.shape[-2:], mode="bilinear", align_corners=True)
|
| 800 |
+
)
|
| 801 |
+
x = x + nn.functional.interpolate(
|
| 802 |
+
self.pixels_mapper(pixels).float(), size=x.shape[-2:], mode="bilinear", align_corners=True
|
| 803 |
+
)
|
| 804 |
+
level_outputs = self._down_encode(x, r_embed, clip)
|
| 805 |
+
x = self._up_decode(level_outputs, r_embed, clip)
|
| 806 |
+
return self.clf(x)
|
| 807 |
+
|
| 808 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
| 809 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
| 810 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
| 811 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
| 812 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
| 813 |
+
|
| 814 |
+
|
| 815 |
+
r"""
|
| 816 |
+
|
| 817 |
+
https://github.com/Stability-AI/StableCascade/blob/master/configs/inference/stage_c_3b.yaml
|
| 818 |
+
|
| 819 |
+
# GLOBAL STUFF
|
| 820 |
+
model_version: 3.6B
|
| 821 |
+
dtype: bfloat16
|
| 822 |
+
|
| 823 |
+
effnet_checkpoint_path: models/effnet_encoder.safetensors
|
| 824 |
+
previewer_checkpoint_path: models/previewer.safetensors
|
| 825 |
+
generator_checkpoint_path: models/stage_c_bf16.safetensors
|
| 826 |
+
"""
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
class StageC(nn.Module):
|
| 830 |
+
def __init__(
|
| 831 |
+
self,
|
| 832 |
+
c_in=16,
|
| 833 |
+
c_out=16,
|
| 834 |
+
c_r=64,
|
| 835 |
+
patch_size=1,
|
| 836 |
+
c_cond=2048,
|
| 837 |
+
c_hidden=[2048, 2048],
|
| 838 |
+
nhead=[32, 32],
|
| 839 |
+
blocks=[[8, 24], [24, 8]],
|
| 840 |
+
block_repeat=[[1, 1], [1, 1]],
|
| 841 |
+
level_config=["CTA", "CTA"],
|
| 842 |
+
c_clip_text=1280,
|
| 843 |
+
c_clip_text_pooled=1280,
|
| 844 |
+
c_clip_img=768,
|
| 845 |
+
c_clip_seq=4,
|
| 846 |
+
kernel_size=3,
|
| 847 |
+
dropout=[0.1, 0.1],
|
| 848 |
+
self_attn=True,
|
| 849 |
+
t_conds=["sca", "crp"],
|
| 850 |
+
switch_level=[False],
|
| 851 |
+
):
|
| 852 |
+
super().__init__()
|
| 853 |
+
self.c_r = c_r
|
| 854 |
+
self.t_conds = t_conds
|
| 855 |
+
self.c_clip_seq = c_clip_seq
|
| 856 |
+
if not isinstance(dropout, list):
|
| 857 |
+
dropout = [dropout] * len(c_hidden)
|
| 858 |
+
if not isinstance(self_attn, list):
|
| 859 |
+
self_attn = [self_attn] * len(c_hidden)
|
| 860 |
+
|
| 861 |
+
# CONDITIONING
|
| 862 |
+
self.clip_txt_mapper = nn.Linear(c_clip_text, c_cond)
|
| 863 |
+
self.clip_txt_pooled_mapper = nn.Linear(c_clip_text_pooled, c_cond * c_clip_seq)
|
| 864 |
+
self.clip_img_mapper = nn.Linear(c_clip_img, c_cond * c_clip_seq)
|
| 865 |
+
self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)
|
| 866 |
+
|
| 867 |
+
self.embedding = nn.Sequential(
|
| 868 |
+
nn.PixelUnshuffle(patch_size),
|
| 869 |
+
nn.Conv2d(c_in * (patch_size**2), c_hidden[0], kernel_size=1),
|
| 870 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
| 874 |
+
if block_type == "C":
|
| 875 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
|
| 876 |
+
elif block_type == "A":
|
| 877 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
|
| 878 |
+
elif block_type == "F":
|
| 879 |
+
return FeedForwardBlock(c_hidden, dropout=dropout)
|
| 880 |
+
elif block_type == "T":
|
| 881 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds)
|
| 882 |
+
else:
|
| 883 |
+
raise Exception(f"Block type {block_type} not supported")
|
| 884 |
+
|
| 885 |
+
# BLOCKS
|
| 886 |
+
# -- down blocks
|
| 887 |
+
self.down_blocks = nn.ModuleList()
|
| 888 |
+
self.down_downscalers = nn.ModuleList()
|
| 889 |
+
self.down_repeat_mappers = nn.ModuleList()
|
| 890 |
+
for i in range(len(c_hidden)):
|
| 891 |
+
if i > 0:
|
| 892 |
+
self.down_downscalers.append(
|
| 893 |
+
nn.Sequential(
|
| 894 |
+
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
|
| 895 |
+
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode="down", enabled=switch_level[i - 1]),
|
| 896 |
+
)
|
| 897 |
+
)
|
| 898 |
+
else:
|
| 899 |
+
self.down_downscalers.append(nn.Identity())
|
| 900 |
+
down_block = nn.ModuleList()
|
| 901 |
+
for _ in range(blocks[0][i]):
|
| 902 |
+
for block_type in level_config[i]:
|
| 903 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
| 904 |
+
down_block.append(block)
|
| 905 |
+
self.down_blocks.append(down_block)
|
| 906 |
+
if block_repeat is not None:
|
| 907 |
+
block_repeat_mappers = nn.ModuleList()
|
| 908 |
+
for _ in range(block_repeat[0][i] - 1):
|
| 909 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
| 910 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
| 911 |
+
|
| 912 |
+
# -- up blocks
|
| 913 |
+
self.up_blocks = nn.ModuleList()
|
| 914 |
+
self.up_upscalers = nn.ModuleList()
|
| 915 |
+
self.up_repeat_mappers = nn.ModuleList()
|
| 916 |
+
for i in reversed(range(len(c_hidden))):
|
| 917 |
+
if i > 0:
|
| 918 |
+
self.up_upscalers.append(
|
| 919 |
+
nn.Sequential(
|
| 920 |
+
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
|
| 921 |
+
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode="up", enabled=switch_level[i - 1]),
|
| 922 |
+
)
|
| 923 |
+
)
|
| 924 |
+
else:
|
| 925 |
+
self.up_upscalers.append(nn.Identity())
|
| 926 |
+
up_block = nn.ModuleList()
|
| 927 |
+
for j in range(blocks[1][::-1][i]):
|
| 928 |
+
for k, block_type in enumerate(level_config[i]):
|
| 929 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
| 930 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], self_attn=self_attn[i])
|
| 931 |
+
up_block.append(block)
|
| 932 |
+
self.up_blocks.append(up_block)
|
| 933 |
+
if block_repeat is not None:
|
| 934 |
+
block_repeat_mappers = nn.ModuleList()
|
| 935 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
| 936 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
| 937 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
| 938 |
+
|
| 939 |
+
# OUTPUT
|
| 940 |
+
self.clf = nn.Sequential(
|
| 941 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
| 942 |
+
nn.Conv2d(c_hidden[0], c_out * (patch_size**2), kernel_size=1),
|
| 943 |
+
nn.PixelShuffle(patch_size),
|
| 944 |
+
)
|
| 945 |
+
|
| 946 |
+
# --- WEIGHT INIT ---
|
| 947 |
+
self.apply(self._init_weights) # General init
|
| 948 |
+
nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
|
| 949 |
+
nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
|
| 950 |
+
nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
|
| 951 |
+
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
| 952 |
+
nn.init.constant_(self.clf[1].weight, 0) # outputs
|
| 953 |
+
|
| 954 |
+
# blocks
|
| 955 |
+
for level_block in self.down_blocks + self.up_blocks:
|
| 956 |
+
for block in level_block:
|
| 957 |
+
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
| 958 |
+
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
| 959 |
+
elif isinstance(block, TimestepBlock):
|
| 960 |
+
for layer in block.modules():
|
| 961 |
+
if isinstance(layer, nn.Linear):
|
| 962 |
+
nn.init.constant_(layer.weight, 0)
|
| 963 |
+
|
| 964 |
+
def _init_weights(self, m):
|
| 965 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
| 966 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
| 967 |
+
if m.bias is not None:
|
| 968 |
+
nn.init.constant_(m.bias, 0)
|
| 969 |
+
|
| 970 |
+
def set_gradient_checkpointing(self, value):
|
| 971 |
+
for block in self.down_blocks + self.up_blocks:
|
| 972 |
+
for layer in block:
|
| 973 |
+
if hasattr(layer, "set_gradient_checkpointing"):
|
| 974 |
+
layer.set_gradient_checkpointing(value)
|
| 975 |
+
|
| 976 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
| 977 |
+
r = r * max_positions
|
| 978 |
+
half_dim = self.c_r // 2
|
| 979 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
| 980 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
| 981 |
+
emb = r[:, None] * emb[None, :]
|
| 982 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
| 983 |
+
if self.c_r % 2 == 1: # zero pad
|
| 984 |
+
emb = nn.functional.pad(emb, (0, 1), mode="constant")
|
| 985 |
+
return emb
|
| 986 |
+
|
| 987 |
+
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
|
| 988 |
+
clip_txt = self.clip_txt_mapper(clip_txt)
|
| 989 |
+
if len(clip_txt_pooled.shape) == 2:
|
| 990 |
+
clip_txt_pool = clip_txt_pooled.unsqueeze(1)
|
| 991 |
+
if len(clip_img.shape) == 2:
|
| 992 |
+
clip_img = clip_img.unsqueeze(1)
|
| 993 |
+
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(
|
| 994 |
+
clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1
|
| 995 |
+
)
|
| 996 |
+
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
|
| 997 |
+
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
|
| 998 |
+
clip = self.clip_norm(clip)
|
| 999 |
+
return clip
|
| 1000 |
+
|
| 1001 |
+
def _down_encode(self, x, r_embed, clip, cnet=None):
|
| 1002 |
+
level_outputs = []
|
| 1003 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
| 1004 |
+
for down_block, downscaler, repmap in block_group:
|
| 1005 |
+
x = downscaler(x)
|
| 1006 |
+
for i in range(len(repmap) + 1):
|
| 1007 |
+
for block in down_block:
|
| 1008 |
+
if isinstance(block, ResBlock) or (
|
| 1009 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
| 1010 |
+
):
|
| 1011 |
+
if cnet is not None:
|
| 1012 |
+
next_cnet = cnet()
|
| 1013 |
+
if next_cnet is not None:
|
| 1014 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode="bilinear", align_corners=True)
|
| 1015 |
+
x = block(x)
|
| 1016 |
+
elif isinstance(block, AttnBlock) or (
|
| 1017 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
| 1018 |
+
):
|
| 1019 |
+
x = block(x, clip)
|
| 1020 |
+
elif isinstance(block, TimestepBlock) or (
|
| 1021 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
| 1022 |
+
):
|
| 1023 |
+
x = block(x, r_embed)
|
| 1024 |
+
else:
|
| 1025 |
+
x = block(x)
|
| 1026 |
+
if i < len(repmap):
|
| 1027 |
+
x = repmap[i](x)
|
| 1028 |
+
level_outputs.insert(0, x)
|
| 1029 |
+
return level_outputs
|
| 1030 |
+
|
| 1031 |
+
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
|
| 1032 |
+
x = level_outputs[0]
|
| 1033 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
| 1034 |
+
now_factor = 1
|
| 1035 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
| 1036 |
+
for j in range(len(repmap) + 1):
|
| 1037 |
+
for k, block in enumerate(up_block):
|
| 1038 |
+
# if getattr(block, "factor", 1) > 1:
|
| 1039 |
+
# now_factor = -getattr(block, "factor", 1)
|
| 1040 |
+
# scale = check_scale(x)
|
| 1041 |
+
# if scale > 5 or (now_factor < 0 and scale > (5/-now_factor)):
|
| 1042 |
+
#print('='*55)
|
| 1043 |
+
#print(f"in: {i} {j} {k}")
|
| 1044 |
+
#print("up", scale)
|
| 1045 |
+
if isinstance(block, ResBlock) or (
|
| 1046 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
| 1047 |
+
):
|
| 1048 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
| 1049 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
| 1050 |
+
x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode="bilinear", align_corners=True)
|
| 1051 |
+
if cnet is not None:
|
| 1052 |
+
next_cnet = cnet()
|
| 1053 |
+
if next_cnet is not None:
|
| 1054 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode="bilinear", align_corners=True)
|
| 1055 |
+
x = block(x, skip)
|
| 1056 |
+
# if now_factor > 1 and block.factor == 1:
|
| 1057 |
+
# block.set_factor(now_factor)
|
| 1058 |
+
elif isinstance(block, AttnBlock) or (
|
| 1059 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
| 1060 |
+
):
|
| 1061 |
+
x = block(x, clip)
|
| 1062 |
+
# if now_factor > 1 and block.factor == 1:
|
| 1063 |
+
# block.set_factor(now_factor)
|
| 1064 |
+
elif isinstance(block, TimestepBlock) or (
|
| 1065 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
| 1066 |
+
):
|
| 1067 |
+
x = block(x, r_embed)
|
| 1068 |
+
# scale = check_scale(x)
|
| 1069 |
+
# if now_factor > 1 and block.factor == 1:
|
| 1070 |
+
# block.set_factor(now_factor, now_factor)
|
| 1071 |
+
# pass
|
| 1072 |
+
# elif i==1:
|
| 1073 |
+
# now_factor = 5
|
| 1074 |
+
# block.set_factor(now_factor, 1)
|
| 1075 |
+
else:
|
| 1076 |
+
x = block(x)
|
| 1077 |
+
# scale = check_scale(x)
|
| 1078 |
+
# if scale > 5 or (now_factor < 0 and scale > (5/-now_factor)):
|
| 1079 |
+
#print(f"out: {i} {j} {k}", '='*50)
|
| 1080 |
+
#print("up", scale)
|
| 1081 |
+
#print(block.__class__.__name__, torch.sum(torch.isnan(x)))
|
| 1082 |
+
if j < len(repmap):
|
| 1083 |
+
x = repmap[j](x)
|
| 1084 |
+
#print('-- pre upscaler ---')
|
| 1085 |
+
#print(check_scale(x))
|
| 1086 |
+
x = upscaler(x)
|
| 1087 |
+
#print('-- post upscaler ---')
|
| 1088 |
+
#print(check_scale(x))
|
| 1089 |
+
# if now_factor > 1:
|
| 1090 |
+
# if isinstance(upscaler, UpDownBlock2d):
|
| 1091 |
+
# upscaler.blocks[1].weight.data /= now_factor
|
| 1092 |
+
# upscaler.blocks[1].bias.data /= now_factor
|
| 1093 |
+
# scale = check_scale(x)
|
| 1094 |
+
# if scale > 5:
|
| 1095 |
+
#print('='*50)
|
| 1096 |
+
#print("upscaler", check_scale(x))
|
| 1097 |
+
return x
|
| 1098 |
+
|
| 1099 |
+
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, cnet=None, **kwargs):
|
| 1100 |
+
# Process the conditioning embeddings
|
| 1101 |
+
r_embed = self.gen_r_embedding(r)
|
| 1102 |
+
for c in self.t_conds:
|
| 1103 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
| 1104 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1)
|
| 1105 |
+
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
|
| 1106 |
+
|
| 1107 |
+
# Model Blocks
|
| 1108 |
+
x = self.embedding(x)
|
| 1109 |
+
#print(check_scale(x))
|
| 1110 |
+
# ControlNet is not supported yet
|
| 1111 |
+
# if cnet is not None:
|
| 1112 |
+
# cnet = ControlNetDeliverer(cnet)
|
| 1113 |
+
level_outputs = self._down_encode(x, r_embed, clip, cnet)
|
| 1114 |
+
x1 = self._up_decode(level_outputs, r_embed, clip, cnet)
|
| 1115 |
+
result1 = self.clf(x1)
|
| 1116 |
+
return result1
|
| 1117 |
+
# self.half()
|
| 1118 |
+
sd = self.state_dict()
|
| 1119 |
+
# x2 = self._up_decode(level_outputs, r_embed, clip, cnet)
|
| 1120 |
+
# result2 = self.clf(x2)
|
| 1121 |
+
#print(torch.nn.functional.mse_loss(result1, result2))
|
| 1122 |
+
from safetensors.torch import save_file
|
| 1123 |
+
save_file(sd, 'factor5_pass4.safetensors')
|
| 1124 |
+
raise Exception("Early Stop")
|
| 1125 |
+
|
| 1126 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
| 1127 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
| 1128 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
| 1129 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
| 1130 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
| 1131 |
+
|
| 1132 |
+
@property
|
| 1133 |
+
def device(self):
|
| 1134 |
+
return next(self.parameters()).device
|
| 1135 |
+
|
| 1136 |
+
@property
|
| 1137 |
+
def dtype(self):
|
| 1138 |
+
return next(self.parameters()).dtype
|
| 1139 |
+
|
| 1140 |
+
|
| 1141 |
+
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
|
| 1142 |
+
class Previewer(nn.Module):
|
| 1143 |
+
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
| 1144 |
+
super().__init__()
|
| 1145 |
+
self.blocks = nn.Sequential(
|
| 1146 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
| 1147 |
+
nn.GELU(),
|
| 1148 |
+
nn.BatchNorm2d(c_hidden),
|
| 1149 |
+
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
| 1150 |
+
nn.GELU(),
|
| 1151 |
+
nn.BatchNorm2d(c_hidden),
|
| 1152 |
+
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
| 1153 |
+
nn.GELU(),
|
| 1154 |
+
nn.BatchNorm2d(c_hidden // 2),
|
| 1155 |
+
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
| 1156 |
+
nn.GELU(),
|
| 1157 |
+
nn.BatchNorm2d(c_hidden // 2),
|
| 1158 |
+
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
| 1159 |
+
nn.GELU(),
|
| 1160 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 1161 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
| 1162 |
+
nn.GELU(),
|
| 1163 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 1164 |
+
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
| 1165 |
+
nn.GELU(),
|
| 1166 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 1167 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
| 1168 |
+
nn.GELU(),
|
| 1169 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 1170 |
+
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
| 1171 |
+
)
|
| 1172 |
+
|
| 1173 |
+
def forward(self, x):
|
| 1174 |
+
return self.blocks(x)
|
| 1175 |
+
|
| 1176 |
+
@property
|
| 1177 |
+
def device(self):
|
| 1178 |
+
return next(self.parameters()).device
|
| 1179 |
+
|
| 1180 |
+
@property
|
| 1181 |
+
def dtype(self):
|
| 1182 |
+
return next(self.parameters()).dtype
|
| 1183 |
+
|
| 1184 |
+
|
| 1185 |
+
def get_clip_conditions(captions: Optional[List[str]], input_ids, tokenizer, text_model):
|
| 1186 |
+
# deprecated
|
| 1187 |
+
|
| 1188 |
+
# self, batch: dict, tokenizer, text_model, is_eval=False, is_unconditional=False, eval_image_embeds=False, return_fields=None
|
| 1189 |
+
# is_eval の処理をここでやるのは微妙なので別のところでやる
|
| 1190 |
+
# is_unconditional もここでやるのは微妙なので別のところでやる
|
| 1191 |
+
# clip_image はとりあえずサポートしない
|
| 1192 |
+
if captions is not None:
|
| 1193 |
+
clip_tokens_unpooled = tokenizer(
|
| 1194 |
+
captions, truncation=True, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
| 1195 |
+
).to(text_model.device)
|
| 1196 |
+
text_encoder_output = text_model(**clip_tokens_unpooled, output_hidden_states=True)
|
| 1197 |
+
else:
|
| 1198 |
+
text_encoder_output = text_model(input_ids, output_hidden_states=True)
|
| 1199 |
+
|
| 1200 |
+
text_embeddings = text_encoder_output.hidden_states[-1]
|
| 1201 |
+
text_pooled_embeddings = text_encoder_output.text_embeds.unsqueeze(1)
|
| 1202 |
+
|
| 1203 |
+
return text_embeddings, text_pooled_embeddings
|
| 1204 |
+
# return {"clip_text": text_embeddings, "clip_text_pooled": text_pooled_embeddings} # , "clip_img": image_embeddings}
|
| 1205 |
+
|
| 1206 |
+
|
| 1207 |
+
# region gdf
|
| 1208 |
+
|
| 1209 |
+
|
| 1210 |
+
class SimpleSampler:
|
| 1211 |
+
def __init__(self, gdf):
|
| 1212 |
+
self.gdf = gdf
|
| 1213 |
+
self.current_step = -1
|
| 1214 |
+
|
| 1215 |
+
def __call__(self, *args, **kwargs):
|
| 1216 |
+
self.current_step += 1
|
| 1217 |
+
return self.step(*args, **kwargs)
|
| 1218 |
+
|
| 1219 |
+
def init_x(self, shape):
|
| 1220 |
+
return torch.randn(*shape)
|
| 1221 |
+
|
| 1222 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev):
|
| 1223 |
+
raise NotImplementedError("You should override the 'apply' function.")
|
| 1224 |
+
|
| 1225 |
+
|
| 1226 |
+
class DDIMSampler(SimpleSampler):
|
| 1227 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=0):
|
| 1228 |
+
a, b = self.gdf.input_scaler(logSNR)
|
| 1229 |
+
if len(a.shape) == 1:
|
| 1230 |
+
a, b = a.view(-1, *[1] * (len(x0.shape) - 1)), b.view(-1, *[1] * (len(x0.shape) - 1))
|
| 1231 |
+
|
| 1232 |
+
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev)
|
| 1233 |
+
if len(a_prev.shape) == 1:
|
| 1234 |
+
a_prev, b_prev = a_prev.view(-1, *[1] * (len(x0.shape) - 1)), b_prev.view(-1, *[1] * (len(x0.shape) - 1))
|
| 1235 |
+
|
| 1236 |
+
sigma_tau = eta * (b_prev**2 / b**2).sqrt() * (1 - a**2 / a_prev**2).sqrt() if eta > 0 else 0
|
| 1237 |
+
# x = a_prev * x0 + (1 - a_prev**2 - sigma_tau ** 2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0)
|
| 1238 |
+
x = a_prev * x0 + (b_prev**2 - sigma_tau**2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0)
|
| 1239 |
+
return x
|
| 1240 |
+
|
| 1241 |
+
|
| 1242 |
+
class DDPMSampler(DDIMSampler):
|
| 1243 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=1):
|
| 1244 |
+
return super().step(x, x0, epsilon, logSNR, logSNR_prev, eta)
|
| 1245 |
+
|
| 1246 |
+
|
| 1247 |
+
class LCMSampler(SimpleSampler):
|
| 1248 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev):
|
| 1249 |
+
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev)
|
| 1250 |
+
if len(a_prev.shape) == 1:
|
| 1251 |
+
a_prev, b_prev = a_prev.view(-1, *[1] * (len(x0.shape) - 1)), b_prev.view(-1, *[1] * (len(x0.shape) - 1))
|
| 1252 |
+
return x0 * a_prev + torch.randn_like(epsilon) * b_prev
|
| 1253 |
+
|
| 1254 |
+
|
| 1255 |
+
class GDF:
|
| 1256 |
+
def __init__(self, schedule, input_scaler, target, noise_cond, loss_weight, offset_noise=0):
|
| 1257 |
+
self.schedule = schedule
|
| 1258 |
+
self.input_scaler = input_scaler
|
| 1259 |
+
self.target = target
|
| 1260 |
+
self.noise_cond = noise_cond
|
| 1261 |
+
self.loss_weight = loss_weight
|
| 1262 |
+
self.offset_noise = offset_noise
|
| 1263 |
+
|
| 1264 |
+
def setup_limits(self, stretch_max=True, stretch_min=True, shift=1):
|
| 1265 |
+
stretched_limits = self.input_scaler.setup_limits(self.schedule, self.input_scaler, stretch_max, stretch_min, shift)
|
| 1266 |
+
return stretched_limits
|
| 1267 |
+
|
| 1268 |
+
def diffuse(self, x0, epsilon=None, t=None, shift=1, loss_shift=1, offset=None):
|
| 1269 |
+
if epsilon is None:
|
| 1270 |
+
epsilon = torch.randn_like(x0)
|
| 1271 |
+
if self.offset_noise > 0:
|
| 1272 |
+
if offset is None:
|
| 1273 |
+
offset = torch.randn([x0.size(0), x0.size(1)] + [1] * (len(x0.shape) - 2)).to(x0.device)
|
| 1274 |
+
epsilon = epsilon + offset * self.offset_noise
|
| 1275 |
+
logSNR = self.schedule(x0.size(0) if t is None else t, shift=shift).to(x0.device)
|
| 1276 |
+
a, b = self.input_scaler(logSNR) # B
|
| 1277 |
+
if len(a.shape) == 1:
|
| 1278 |
+
a, b = a.view(-1, *[1] * (len(x0.shape) - 1)), b.view(-1, *[1] * (len(x0.shape) - 1)) # BxCxHxW
|
| 1279 |
+
target = self.target(x0, epsilon, logSNR, a, b)
|
| 1280 |
+
|
| 1281 |
+
# noised, noise, logSNR, t_cond
|
| 1282 |
+
return x0 * a + epsilon * b, epsilon, target, logSNR, self.noise_cond(logSNR), self.loss_weight(logSNR, shift=loss_shift)
|
| 1283 |
+
|
| 1284 |
+
def undiffuse(self, x, logSNR, pred):
|
| 1285 |
+
a, b = self.input_scaler(logSNR)
|
| 1286 |
+
if len(a.shape) == 1:
|
| 1287 |
+
a, b = a.view(-1, *[1] * (len(x.shape) - 1)), b.view(-1, *[1] * (len(x.shape) - 1))
|
| 1288 |
+
return self.target.x0(x, pred, logSNR, a, b), self.target.epsilon(x, pred, logSNR, a, b)
|
| 1289 |
+
|
| 1290 |
+
def sample(
|
| 1291 |
+
self,
|
| 1292 |
+
model,
|
| 1293 |
+
model_inputs,
|
| 1294 |
+
shape,
|
| 1295 |
+
unconditional_inputs=None,
|
| 1296 |
+
sampler=None,
|
| 1297 |
+
schedule=None,
|
| 1298 |
+
t_start=1.0,
|
| 1299 |
+
t_end=0.0,
|
| 1300 |
+
timesteps=20,
|
| 1301 |
+
x_init=None,
|
| 1302 |
+
cfg=3.0,
|
| 1303 |
+
cfg_t_stop=None,
|
| 1304 |
+
cfg_t_start=None,
|
| 1305 |
+
cfg_rho=0.7,
|
| 1306 |
+
sampler_params=None,
|
| 1307 |
+
shift=1,
|
| 1308 |
+
device="cpu",
|
| 1309 |
+
):
|
| 1310 |
+
sampler_params = {} if sampler_params is None else sampler_params
|
| 1311 |
+
if sampler is None:
|
| 1312 |
+
sampler = DDPMSampler(self)
|
| 1313 |
+
r_range = torch.linspace(t_start, t_end, timesteps + 1)
|
| 1314 |
+
schedule = self.schedule if schedule is None else schedule
|
| 1315 |
+
logSNR_range = schedule(r_range, shift=shift)[:, None].expand(-1, shape[0] if x_init is None else x_init.size(0)).to(device)
|
| 1316 |
+
|
| 1317 |
+
x = sampler.init_x(shape).to(device) if x_init is None else x_init.clone()
|
| 1318 |
+
if cfg is not None:
|
| 1319 |
+
if unconditional_inputs is None:
|
| 1320 |
+
unconditional_inputs = {k: torch.zeros_like(v) for k, v in model_inputs.items()}
|
| 1321 |
+
model_inputs = {
|
| 1322 |
+
k: (
|
| 1323 |
+
torch.cat([v, v_u], dim=0)
|
| 1324 |
+
if isinstance(v, torch.Tensor)
|
| 1325 |
+
else (
|
| 1326 |
+
[
|
| 1327 |
+
(
|
| 1328 |
+
torch.cat([vi, vi_u], dim=0)
|
| 1329 |
+
if isinstance(vi, torch.Tensor) and isinstance(vi_u, torch.Tensor)
|
| 1330 |
+
else None
|
| 1331 |
+
)
|
| 1332 |
+
for vi, vi_u in zip(v, v_u)
|
| 1333 |
+
]
|
| 1334 |
+
if isinstance(v, list)
|
| 1335 |
+
else (
|
| 1336 |
+
{vk: torch.cat([v[vk], v_u.get(vk, torch.zeros_like(v[vk]))], dim=0) for vk in v}
|
| 1337 |
+
if isinstance(v, dict)
|
| 1338 |
+
else None
|
| 1339 |
+
)
|
| 1340 |
+
)
|
| 1341 |
+
)
|
| 1342 |
+
for (k, v), (k_u, v_u) in zip(model_inputs.items(), unconditional_inputs.items())
|
| 1343 |
+
}
|
| 1344 |
+
for i in range(0, timesteps):
|
| 1345 |
+
noise_cond = self.noise_cond(logSNR_range[i])
|
| 1346 |
+
if (
|
| 1347 |
+
cfg is not None
|
| 1348 |
+
and (cfg_t_stop is None or r_range[i].item() >= cfg_t_stop)
|
| 1349 |
+
and (cfg_t_start is None or r_range[i].item() <= cfg_t_start)
|
| 1350 |
+
):
|
| 1351 |
+
cfg_val = cfg
|
| 1352 |
+
if isinstance(cfg_val, (list, tuple)):
|
| 1353 |
+
assert len(cfg_val) == 2, "cfg must be a float or a list/tuple of length 2"
|
| 1354 |
+
cfg_val = cfg_val[0] * r_range[i].item() + cfg_val[1] * (1 - r_range[i].item())
|
| 1355 |
+
pred, pred_unconditional = model(torch.cat([x, x], dim=0), noise_cond.repeat(2), **model_inputs).chunk(2)
|
| 1356 |
+
pred_cfg = torch.lerp(pred_unconditional, pred, cfg_val)
|
| 1357 |
+
if cfg_rho > 0:
|
| 1358 |
+
std_pos, std_cfg = pred.std(), pred_cfg.std()
|
| 1359 |
+
pred = cfg_rho * (pred_cfg * std_pos / (std_cfg + 1e-9)) + pred_cfg * (1 - cfg_rho)
|
| 1360 |
+
else:
|
| 1361 |
+
pred = pred_cfg
|
| 1362 |
+
else:
|
| 1363 |
+
pred = model(x, noise_cond, **model_inputs)
|
| 1364 |
+
x0, epsilon = self.undiffuse(x, logSNR_range[i], pred)
|
| 1365 |
+
x = sampler(x, x0, epsilon, logSNR_range[i], logSNR_range[i + 1], **sampler_params)
|
| 1366 |
+
altered_vars = yield (x0, x, pred)
|
| 1367 |
+
|
| 1368 |
+
# Update some running variables if the user wants
|
| 1369 |
+
if altered_vars is not None:
|
| 1370 |
+
cfg = altered_vars.get("cfg", cfg)
|
| 1371 |
+
cfg_rho = altered_vars.get("cfg_rho", cfg_rho)
|
| 1372 |
+
sampler = altered_vars.get("sampler", sampler)
|
| 1373 |
+
model_inputs = altered_vars.get("model_inputs", model_inputs)
|
| 1374 |
+
x = altered_vars.get("x", x)
|
| 1375 |
+
x_init = altered_vars.get("x_init", x_init)
|
| 1376 |
+
|
| 1377 |
+
|
| 1378 |
+
class BaseSchedule:
|
| 1379 |
+
def __init__(self, *args, force_limits=True, discrete_steps=None, shift=1, **kwargs):
|
| 1380 |
+
self.setup(*args, **kwargs)
|
| 1381 |
+
self.limits = None
|
| 1382 |
+
self.discrete_steps = discrete_steps
|
| 1383 |
+
self.shift = shift
|
| 1384 |
+
if force_limits:
|
| 1385 |
+
self.reset_limits()
|
| 1386 |
+
|
| 1387 |
+
def reset_limits(self, shift=1, disable=False):
|
| 1388 |
+
try:
|
| 1389 |
+
self.limits = None if disable else self(torch.tensor([1.0, 0.0]), shift=shift).tolist() # min, max
|
| 1390 |
+
return self.limits
|
| 1391 |
+
except Exception:
|
| 1392 |
+
#print("WARNING: this schedule doesn't support t and will be unbounded")
|
| 1393 |
+
return None
|
| 1394 |
+
|
| 1395 |
+
def setup(self, *args, **kwargs):
|
| 1396 |
+
raise NotImplementedError("this method needs to be overridden")
|
| 1397 |
+
|
| 1398 |
+
def schedule(self, *args, **kwargs):
|
| 1399 |
+
raise NotImplementedError("this method needs to be overridden")
|
| 1400 |
+
|
| 1401 |
+
def __call__(self, t, *args, shift=1, **kwargs):
|
| 1402 |
+
if isinstance(t, torch.Tensor):
|
| 1403 |
+
batch_size = None
|
| 1404 |
+
if self.discrete_steps is not None:
|
| 1405 |
+
if t.dtype != torch.long:
|
| 1406 |
+
t = (t * (self.discrete_steps - 1)).round().long()
|
| 1407 |
+
t = t / (self.discrete_steps - 1)
|
| 1408 |
+
t = t.clamp(0, 1)
|
| 1409 |
+
else:
|
| 1410 |
+
batch_size = t
|
| 1411 |
+
t = None
|
| 1412 |
+
logSNR = self.schedule(t, batch_size, *args, **kwargs)
|
| 1413 |
+
if shift * self.shift != 1:
|
| 1414 |
+
logSNR += 2 * np.log(1 / (shift * self.shift))
|
| 1415 |
+
if self.limits is not None:
|
| 1416 |
+
logSNR = logSNR.clamp(*self.limits)
|
| 1417 |
+
return logSNR
|
| 1418 |
+
|
| 1419 |
+
|
| 1420 |
+
class CosineSchedule(BaseSchedule):
|
| 1421 |
+
def setup(self, s=0.008, clamp_range=[0.0001, 0.9999], norm_instead=False):
|
| 1422 |
+
self.s = torch.tensor([s])
|
| 1423 |
+
self.clamp_range = clamp_range
|
| 1424 |
+
self.norm_instead = norm_instead
|
| 1425 |
+
self.min_var = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2
|
| 1426 |
+
|
| 1427 |
+
def schedule(self, t, batch_size):
|
| 1428 |
+
if t is None:
|
| 1429 |
+
t = (1 - torch.rand(batch_size)).add(0.001).clamp(0.001, 1.0)
|
| 1430 |
+
s, min_var = self.s.to(t.device), self.min_var.to(t.device)
|
| 1431 |
+
var = torch.cos((s + t) / (1 + s) * torch.pi * 0.5).clamp(0, 1) ** 2 / min_var
|
| 1432 |
+
if self.norm_instead:
|
| 1433 |
+
var = var * (self.clamp_range[1] - self.clamp_range[0]) + self.clamp_range[0]
|
| 1434 |
+
else:
|
| 1435 |
+
var = var.clamp(*self.clamp_range)
|
| 1436 |
+
logSNR = (var / (1 - var)).log()
|
| 1437 |
+
return logSNR
|
| 1438 |
+
|
| 1439 |
+
|
| 1440 |
+
class BaseScaler:
|
| 1441 |
+
def __init__(self):
|
| 1442 |
+
self.stretched_limits = None
|
| 1443 |
+
|
| 1444 |
+
def setup_limits(self, schedule, input_scaler, stretch_max=True, stretch_min=True, shift=1):
|
| 1445 |
+
min_logSNR = schedule(torch.ones(1), shift=shift)
|
| 1446 |
+
max_logSNR = schedule(torch.zeros(1), shift=shift)
|
| 1447 |
+
|
| 1448 |
+
min_a, max_b = [v.item() for v in input_scaler(min_logSNR)] if stretch_max else [0, 1]
|
| 1449 |
+
max_a, min_b = [v.item() for v in input_scaler(max_logSNR)] if stretch_min else [1, 0]
|
| 1450 |
+
self.stretched_limits = [min_a, max_a, min_b, max_b]
|
| 1451 |
+
return self.stretched_limits
|
| 1452 |
+
|
| 1453 |
+
def stretch_limits(self, a, b):
|
| 1454 |
+
min_a, max_a, min_b, max_b = self.stretched_limits
|
| 1455 |
+
return (a - min_a) / (max_a - min_a), (b - min_b) / (max_b - min_b)
|
| 1456 |
+
|
| 1457 |
+
def scalers(self, logSNR):
|
| 1458 |
+
raise NotImplementedError("this method needs to be overridden")
|
| 1459 |
+
|
| 1460 |
+
def __call__(self, logSNR):
|
| 1461 |
+
a, b = self.scalers(logSNR)
|
| 1462 |
+
if self.stretched_limits is not None:
|
| 1463 |
+
a, b = self.stretch_limits(a, b)
|
| 1464 |
+
return a, b
|
| 1465 |
+
|
| 1466 |
+
|
| 1467 |
+
class VPScaler(BaseScaler):
|
| 1468 |
+
def scalers(self, logSNR):
|
| 1469 |
+
a_squared = logSNR.sigmoid()
|
| 1470 |
+
a = a_squared.sqrt()
|
| 1471 |
+
b = (1 - a_squared).sqrt()
|
| 1472 |
+
return a, b
|
| 1473 |
+
|
| 1474 |
+
|
| 1475 |
+
class EpsilonTarget:
|
| 1476 |
+
def __call__(self, x0, epsilon, logSNR, a, b):
|
| 1477 |
+
return epsilon
|
| 1478 |
+
|
| 1479 |
+
def x0(self, noised, pred, logSNR, a, b):
|
| 1480 |
+
return (noised - pred * b) / a
|
| 1481 |
+
|
| 1482 |
+
def epsilon(self, noised, pred, logSNR, a, b):
|
| 1483 |
+
return pred
|
| 1484 |
+
|
| 1485 |
+
|
| 1486 |
+
class BaseNoiseCond:
|
| 1487 |
+
def __init__(self, *args, shift=1, clamp_range=None, **kwargs):
|
| 1488 |
+
clamp_range = [-1e9, 1e9] if clamp_range is None else clamp_range
|
| 1489 |
+
self.shift = shift
|
| 1490 |
+
self.clamp_range = clamp_range
|
| 1491 |
+
self.setup(*args, **kwargs)
|
| 1492 |
+
|
| 1493 |
+
def setup(self, *args, **kwargs):
|
| 1494 |
+
pass # this method is optional, override it if required
|
| 1495 |
+
|
| 1496 |
+
def cond(self, logSNR):
|
| 1497 |
+
raise NotImplementedError("this method needs to be overridden")
|
| 1498 |
+
|
| 1499 |
+
def __call__(self, logSNR):
|
| 1500 |
+
if self.shift != 1:
|
| 1501 |
+
logSNR = logSNR.clone() + 2 * np.log(self.shift)
|
| 1502 |
+
return self.cond(logSNR).clamp(*self.clamp_range)
|
| 1503 |
+
|
| 1504 |
+
|
| 1505 |
+
class CosineTNoiseCond(BaseNoiseCond):
|
| 1506 |
+
def setup(self, s=0.008, clamp_range=[0, 1]): # [0.0001, 0.9999]
|
| 1507 |
+
self.s = torch.tensor([s])
|
| 1508 |
+
self.clamp_range = clamp_range
|
| 1509 |
+
self.min_var = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2
|
| 1510 |
+
|
| 1511 |
+
def cond(self, logSNR):
|
| 1512 |
+
var = logSNR.sigmoid()
|
| 1513 |
+
var = var.clamp(*self.clamp_range)
|
| 1514 |
+
s, min_var = self.s.to(var.device), self.min_var.to(var.device)
|
| 1515 |
+
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
|
| 1516 |
+
return t
|
| 1517 |
+
|
| 1518 |
+
|
| 1519 |
+
# --- Loss Weighting
|
| 1520 |
+
class BaseLossWeight:
|
| 1521 |
+
def weight(self, logSNR):
|
| 1522 |
+
raise NotImplementedError("this method needs to be overridden")
|
| 1523 |
+
|
| 1524 |
+
def __call__(self, logSNR, *args, shift=1, clamp_range=None, **kwargs):
|
| 1525 |
+
clamp_range = [-1e9, 1e9] if clamp_range is None else clamp_range
|
| 1526 |
+
if shift != 1:
|
| 1527 |
+
logSNR = logSNR.clone() + 2 * np.log(shift)
|
| 1528 |
+
return self.weight(logSNR, *args, **kwargs).clamp(*clamp_range)
|
| 1529 |
+
|
| 1530 |
+
|
| 1531 |
+
# class ComposedLossWeight(BaseLossWeight):
|
| 1532 |
+
# def __init__(self, div, mul):
|
| 1533 |
+
# self.mul = [mul] if isinstance(mul, BaseLossWeight) else mul
|
| 1534 |
+
# self.div = [div] if isinstance(div, BaseLossWeight) else div
|
| 1535 |
+
|
| 1536 |
+
# def weight(self, logSNR):
|
| 1537 |
+
# prod, div = 1, 1
|
| 1538 |
+
# for m in self.mul:
|
| 1539 |
+
# prod *= m.weight(logSNR)
|
| 1540 |
+
# for d in self.div:
|
| 1541 |
+
# div *= d.weight(logSNR)
|
| 1542 |
+
# return prod/div
|
| 1543 |
+
|
| 1544 |
+
# class ConstantLossWeight(BaseLossWeight):
|
| 1545 |
+
# def __init__(self, v=1):
|
| 1546 |
+
# self.v = v
|
| 1547 |
+
|
| 1548 |
+
# def weight(self, logSNR):
|
| 1549 |
+
# return torch.ones_like(logSNR) * self.v
|
| 1550 |
+
|
| 1551 |
+
# class SNRLossWeight(BaseLossWeight):
|
| 1552 |
+
# def weight(self, logSNR):
|
| 1553 |
+
# return logSNR.exp()
|
| 1554 |
+
|
| 1555 |
+
|
| 1556 |
+
class P2LossWeight(BaseLossWeight):
|
| 1557 |
+
def __init__(self, k=1.0, gamma=1.0, s=1.0):
|
| 1558 |
+
self.k, self.gamma, self.s = k, gamma, s
|
| 1559 |
+
|
| 1560 |
+
def weight(self, logSNR):
|
| 1561 |
+
return (self.k + (logSNR * self.s).exp()) ** -self.gamma
|
| 1562 |
+
|
| 1563 |
+
|
| 1564 |
+
# class SNRPlusOneLossWeight(BaseLossWeight):
|
| 1565 |
+
# def weight(self, logSNR):
|
| 1566 |
+
# return logSNR.exp() + 1
|
| 1567 |
+
|
| 1568 |
+
# class MinSNRLossWeight(BaseLossWeight):
|
| 1569 |
+
# def __init__(self, max_snr=5):
|
| 1570 |
+
# self.max_snr = max_snr
|
| 1571 |
+
|
| 1572 |
+
# def weight(self, logSNR):
|
| 1573 |
+
# return logSNR.exp().clamp(max=self.max_snr)
|
| 1574 |
+
|
| 1575 |
+
# class MinSNRPlusOneLossWeight(BaseLossWeight):
|
| 1576 |
+
# def __init__(self, max_snr=5):
|
| 1577 |
+
# self.max_snr = max_snr
|
| 1578 |
+
|
| 1579 |
+
# def weight(self, logSNR):
|
| 1580 |
+
# return (logSNR.exp() + 1).clamp(max=self.max_snr)
|
| 1581 |
+
|
| 1582 |
+
# class TruncatedSNRLossWeight(BaseLossWeight):
|
| 1583 |
+
# def __init__(self, min_snr=1):
|
| 1584 |
+
# self.min_snr = min_snr
|
| 1585 |
+
|
| 1586 |
+
# def weight(self, logSNR):
|
| 1587 |
+
# return logSNR.exp().clamp(min=self.min_snr)
|
| 1588 |
+
|
| 1589 |
+
# class SechLossWeight(BaseLossWeight):
|
| 1590 |
+
# def __init__(self, div=2):
|
| 1591 |
+
# self.div = div
|
| 1592 |
+
|
| 1593 |
+
# def weight(self, logSNR):
|
| 1594 |
+
# return 1/(logSNR/self.div).cosh()
|
| 1595 |
+
|
| 1596 |
+
# class DebiasedLossWeight(BaseLossWeight):
|
| 1597 |
+
# def weight(self, logSNR):
|
| 1598 |
+
# return 1/logSNR.exp().sqrt()
|
| 1599 |
+
|
| 1600 |
+
# class SigmoidLossWeight(BaseLossWeight):
|
| 1601 |
+
# def __init__(self, s=1):
|
| 1602 |
+
# self.s = s
|
| 1603 |
+
|
| 1604 |
+
# def weight(self, logSNR):
|
| 1605 |
+
# return (logSNR * self.s).sigmoid()
|
| 1606 |
+
|
| 1607 |
+
|
| 1608 |
+
class AdaptiveLossWeight(BaseLossWeight):
|
| 1609 |
+
def __init__(self, logsnr_range=[-10, 10], buckets=300, weight_range=[1e-7, 1e7]):
|
| 1610 |
+
self.bucket_ranges = torch.linspace(logsnr_range[0], logsnr_range[1], buckets - 1)
|
| 1611 |
+
self.bucket_losses = torch.ones(buckets)
|
| 1612 |
+
self.weight_range = weight_range
|
| 1613 |
+
|
| 1614 |
+
def weight(self, logSNR):
|
| 1615 |
+
indices = torch.searchsorted(self.bucket_ranges.to(logSNR.device), logSNR)
|
| 1616 |
+
return (1 / self.bucket_losses.to(logSNR.device)[indices]).clamp(*self.weight_range)
|
| 1617 |
+
|
| 1618 |
+
def update_buckets(self, logSNR, loss, beta=0.99):
|
| 1619 |
+
indices = torch.searchsorted(self.bucket_ranges.to(logSNR.device), logSNR).cpu()
|
| 1620 |
+
self.bucket_losses[indices] = self.bucket_losses[indices] * beta + loss.detach().cpu() * (1 - beta)
|
| 1621 |
+
|
| 1622 |
+
|
| 1623 |
+
# endregion gdf
|