TR2-D2 / tr2d2-dna /eval_runs_batch.py
zyc4975matholic
Include DNA training code
303c2e0
#!/usr/bin/env python3
"""
Batch evaluation script for multiple runs with checkpoints.
This script:
1. Scans a folder containing different runs
2. For each run, finds checkpoints and selects the one with largest epoch number
3. Evaluates that checkpoint and saves results indexed by run folder name
"""
import os
import re
import glob
import argparse
from pathlib import Path
from diffusion import Diffusion
import dataloader_gosai
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import oracle
from scipy.stats import pearsonr
import torch
from tqdm import tqdm
from eval_utils import get_eval_matrics
from hydra import initialize, compose
from hydra.core.global_hydra import GlobalHydra
from dataclasses import dataclass
from datetime import datetime
import json
@dataclass
class Args:
total_num_steps: int
batch_size: int
num_seeds: int
total_samples: int
seq_length: int
def find_latest_checkpoint(run_dir):
"""
Find the checkpoint with the largest epoch/step number in a run directory.
Args:
run_dir (str): Path to the run directory
Returns:
str or None: Path to the latest checkpoint, or None if no checkpoints found
"""
ckpt_pattern = os.path.join(run_dir, "model_*.ckpt")
ckpt_files = glob.glob(ckpt_pattern)
if not ckpt_files:
return None
# Extract step numbers from checkpoint filenames
step_numbers = []
for ckpt_file in ckpt_files:
filename = os.path.basename(ckpt_file)
match = re.search(r'model_(\d+)\.ckpt', filename)
if match:
step_numbers.append((int(match.group(1)), ckpt_file))
if not step_numbers:
return None
# Return checkpoint with largest step number
step_numbers.sort(key=lambda x: x[0], reverse=True)
return step_numbers[0][1]
def evaluate_checkpoint(checkpoint_path, args, cfg, pretrained_model, gosai_oracle,
cal_atac_pred_new_mdl, highexp_kmers_999, n_highexp_kmers_999, device):
"""
Evaluate a single checkpoint.
Args:
checkpoint_path (str): Path to the checkpoint file
args: Evaluation arguments
cfg: Configuration object
pretrained_model: Pretrained reference model
gosai_oracle: GOSAI oracle model
cal_atac_pred_new_mdl: ATAC prediction model
highexp_kmers_999: High expression k-mers
n_highexp_kmers_999: Number of high expression k-mers
device: Device to run evaluation on
Returns:
tuple: (eval_metrics_agg, total_rewards_agg) containing aggregated results
"""
# Load the policy model from checkpoint
policy_model = Diffusion(cfg).to(device)
policy_model.load_state_dict(torch.load(checkpoint_path, map_location=device))
policy_model.eval()
total_rewards_all = []
eval_metrics_all = []
print(f"Evaluating checkpoint: {os.path.basename(checkpoint_path)}")
for i in range(args.num_seeds):
iter_times = args.total_samples // args.batch_size
total_samples = []
total_rewards = []
range_bar = tqdm(range(iter_times), desc=f"Seed {i+1}", leave=False)
for j in range_bar:
x_eval, mean_reward_eval = policy_model.sample_finetuned(args, gosai_oracle)
total_samples.append(x_eval)
total_rewards.append(mean_reward_eval.item() * args.batch_size)
total_samples = torch.concat(total_samples)
eval_metrics = get_eval_matrics(samples=total_samples, ref_model=pretrained_model,
gosai_oracle=gosai_oracle, cal_atac_pred_new_mdl=cal_atac_pred_new_mdl,
highexp_kmers_999=highexp_kmers_999, n_highexp_kmers_999=n_highexp_kmers_999)
eval_metrics_all.append(eval_metrics)
total_rewards_all.append(np.sum(total_rewards) / args.total_samples)
# Aggregate results
eval_metrics_agg = {k: (np.mean([eval_metrics[k] for eval_metrics in eval_metrics_all]),
np.std([eval_metrics[k] for eval_metrics in eval_metrics_all]))
for k in eval_metrics_all[0].keys()}
total_rewards_agg = (np.mean(total_rewards_all), np.std(total_rewards_all))
return eval_metrics_agg, total_rewards_agg
def save_results(results, output_file):
"""
Save evaluation results to a text file.
Args:
results (dict): Dictionary containing results for each run
output_file (str): Path to output file
"""
with open(output_file, 'w') as f:
f.write("="*80 + "\n")
f.write("BATCH EVALUATION RESULTS\n")
f.write("="*80 + "\n")
f.write(f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"Total runs evaluated: {len(results)}\n\n")
for run_name, result in results.items():
if result is None:
f.write(f"RUN: {run_name}\n")
f.write("-" * 60 + "\n")
f.write("Status: No checkpoints found or evaluation failed\n\n")
continue
eval_metrics_agg, total_rewards_agg, checkpoint_path = result
f.write(f"RUN: {run_name}\n")
f.write("-" * 60 + "\n")
f.write(f"Checkpoint: {os.path.basename(checkpoint_path)}\n")
f.write(f"Full path: {checkpoint_path}\n\n")
f.write("📊 EVALUATION METRICS:\n")
for metric_name in eval_metrics_agg.keys():
mean_val = eval_metrics_agg[metric_name][0]
std_val = eval_metrics_agg[metric_name][1]
f.write(f" {metric_name:<20}: {mean_val:8.4f} ± {std_val:6.4f}\n")
f.write(f"\n🎯 TOTAL REWARDS:\n")
f.write(f" {'Mean':<20}: {total_rewards_agg[0]:8.4f}\n")
f.write(f" {'Std':<20}: {total_rewards_agg[1]:8.4f}\n")
f.write("\n")
print(f"Results saved to: {output_file}")
def append_single_result(run_name, result, output_file, is_first_run=False):
"""
Append a single successful run result to the output file.
Args:
run_name (str): Name of the run
result: Result tuple (eval_metrics_agg, total_rewards_agg, checkpoint_path)
output_file (str): Path to output file
is_first_run (bool): Whether this is the first successful run (write header)
"""
mode = 'w' if is_first_run else 'a'
with open(output_file, mode) as f:
if is_first_run:
f.write("="*80 + "\n")
f.write("BATCH EVALUATION RESULTS\n")
f.write("="*80 + "\n")
f.write(f"Started on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write("Results are saved incrementally as each run completes.\n")
f.write("Only successful evaluations are included.\n\n")
eval_metrics_agg, total_rewards_agg, checkpoint_path = result
f.write(f"RUN: {run_name}\n")
f.write("-" * 60 + "\n")
f.write(f"Checkpoint: {os.path.basename(checkpoint_path)}\n")
f.write(f"Full path: {checkpoint_path}\n")
f.write(f"Completed at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write("📊 EVALUATION METRICS:\n")
for metric_name in eval_metrics_agg.keys():
mean_val = eval_metrics_agg[metric_name][0]
std_val = eval_metrics_agg[metric_name][1]
f.write(f" {metric_name:<20}: {mean_val:8.4f} ± {std_val:6.4f}\n")
f.write(f"\n🎯 TOTAL REWARDS:\n")
f.write(f" {'Mean':<20}: {total_rewards_agg[0]:8.4f}\n")
f.write(f" {'Std':<20}: {total_rewards_agg[1]:8.4f}\n")
f.write("\n" + "="*80 + "\n\n") # Add separator line and extra spacing
def main():
parser = argparse.ArgumentParser(description="Batch evaluation of multiple runs")
parser.add_argument("--runs_dir", type=str, required=True,
help="Directory containing run folders with checkpoints")
parser.add_argument("--output_file", type=str, default="batch_eval_results.txt",
help="Output file to save results")
parser.add_argument("--device", type=str, default="cuda:0",
help="Device to run evaluation on")
parser.add_argument("--total_num_steps", type=int, default=128,
help="Total number of diffusion steps")
parser.add_argument("--batch_size", type=int, default=128,
help="Batch size for evaluation")
parser.add_argument("--num_seeds", type=int, default=3,
help="Number of random seeds for evaluation")
parser.add_argument("--total_samples", type=int, default=640,
help="Total number of samples to generate")
parser.add_argument("--seq_length", type=int, default=200,
help="Sequence length")
parser.add_argument("--pretrained_path", type=str,
default=None,
help="Path to pretrained model checkpoint")
args = parser.parse_args()
# Setup evaluation arguments
eval_args = Args(
total_num_steps=args.total_num_steps,
batch_size=args.batch_size,
num_seeds=args.num_seeds,
total_samples=args.total_samples,
seq_length=args.seq_length
)
device = args.device
# Initialize Hydra configuration
if GlobalHydra().is_initialized():
GlobalHydra.instance().clear()
initialize(config_path="configs_gosai", job_name="batch_eval")
cfg = compose(config_name="config_gosai.yaml")
print("Loading pretrained model and oracles...")
# Load pretrained model
pretrained_model = Diffusion.load_from_checkpoint(args.pretrained_path, config=cfg, map_location=device)
pretrained_model.eval()
# Load oracles
_, _, highexp_kmers_999, n_highexp_kmers_999, _, _, _ = oracle.cal_highexp_kmers(return_clss=True)
cal_atac_pred_new_mdl = oracle.get_cal_atac_orale(device=device)
cal_atac_pred_new_mdl.eval()
gosai_oracle = oracle.get_gosai_oracle(mode='eval', device=device)
gosai_oracle.eval()
print("Scanning for runs...")
# Find all run directories
runs_dir = Path(args.runs_dir)
if not runs_dir.exists():
print(f"Error: Directory {args.runs_dir} does not exist")
return
run_dirs = [d for d in runs_dir.iterdir() if d.is_dir()]
run_dirs.sort() # Sort for consistent ordering
print(f"Found {len(run_dirs)} run directories")
results = {}
successful_runs = 0
failed_runs = 0
# Process each run
for i, run_dir in enumerate(tqdm(run_dirs, desc="Processing runs")):
run_name = run_dir.name
print(f"\nProcessing run {i+1}/{len(run_dirs)}: {run_name}")
# Find latest checkpoint
latest_ckpt = find_latest_checkpoint(str(run_dir))
if latest_ckpt is None:
print(f" No checkpoints found in {run_name} - skipping")
failed_runs += 1
continue # Skip this run entirely, don't save anything to file
print(f" Found latest checkpoint: {os.path.basename(latest_ckpt)}")
try:
# Evaluate checkpoint
eval_metrics_agg, total_rewards_agg = evaluate_checkpoint(
latest_ckpt, eval_args, cfg, pretrained_model, gosai_oracle,
cal_atac_pred_new_mdl, highexp_kmers_999, n_highexp_kmers_999, device
)
result = (eval_metrics_agg, total_rewards_agg, latest_ckpt)
results[run_name] = result
successful_runs += 1
print(f" ✓ Evaluation completed successfully")
# Save result incrementally (only for successful evaluations)
is_first_run = (len(results) == 1) # First successful run
append_single_result(run_name, result, args.output_file, is_first_run=is_first_run)
print(f" Result saved to {args.output_file}")
except Exception as e:
print(f" ✗ Evaluation failed: {str(e)}")
failed_runs += 1
# Don't save failed evaluations to file either
# Add final summary to the file (only if there were successful runs)
if successful_runs > 0:
with open(args.output_file, 'a') as f:
f.write("="*80 + "\n")
f.write("FINAL SUMMARY\n")
f.write("="*80 + "\n")
f.write(f"Completed on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"Total runs processed: {len(run_dirs)}\n")
f.write(f"Successful evaluations: {successful_runs}\n")
f.write(f"Failed/skipped runs: {failed_runs}\n")
else:
print(f"No successful evaluations - output file {args.output_file} not created")
# Print summary
print(f"\nFinal Summary:")
print(f" Total runs processed: {len(run_dirs)}")
print(f" Successful evaluations: {successful_runs}")
print(f" Failed/skipped runs: {failed_runs}")
if successful_runs > 0:
print(f" Results saved to: {args.output_file}")
else:
print(f" No output file created (no successful evaluations)")
if __name__ == "__main__":
main()