Update model.py
Browse files
model.py
CHANGED
|
@@ -1,15 +1,136 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 2 |
from config import Config
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
class CyberAttackDetectionModel:
|
| 5 |
def __init__(self):
|
|
|
|
| 6 |
self.tokenizer = AutoTokenizer.from_pretrained(Config.TOKENIZER_NAME)
|
| 7 |
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
|
| 8 |
self.model.to(Config.DEVICE)
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def predict(self, prompt):
|
| 11 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=Config.MAX_LENGTH)
|
| 12 |
inputs = {key: value.to(Config.DEVICE) for key, value in inputs.items()}
|
| 13 |
|
| 14 |
outputs = self.model.generate(**inputs, max_length=Config.MAX_LENGTH)
|
| 15 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
| 2 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
| 3 |
from config import Config
|
| 4 |
+
import torch
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import pandas as pd
|
| 7 |
|
| 8 |
class CyberAttackDetectionModel:
|
| 9 |
def __init__(self):
|
| 10 |
+
# Initialize tokenizer and model
|
| 11 |
self.tokenizer = AutoTokenizer.from_pretrained(Config.TOKENIZER_NAME)
|
| 12 |
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
|
| 13 |
self.model.to(Config.DEVICE)
|
| 14 |
|
| 15 |
+
def preprocess_data(self, dataset):
|
| 16 |
+
"""
|
| 17 |
+
Preprocess the raw text dataset by cleaning and tokenizing.
|
| 18 |
+
"""
|
| 19 |
+
# Clean the dataset (basic text normalization, removing unwanted characters)
|
| 20 |
+
def clean_text(text):
|
| 21 |
+
# Implement custom cleaning function based on dataset's characteristics
|
| 22 |
+
# E.g., removing unwanted characters, special symbols, etc.
|
| 23 |
+
text = text.lower() # Example of making text lowercase
|
| 24 |
+
text = text.replace("\n", " ") # Removing newlines
|
| 25 |
+
return text
|
| 26 |
+
|
| 27 |
+
# Apply cleaning to the dataset
|
| 28 |
+
dataset = dataset.map(lambda x: {'text': clean_text(x['text'])})
|
| 29 |
+
|
| 30 |
+
# Tokenization
|
| 31 |
+
def tokenize_function(examples):
|
| 32 |
+
return self.tokenizer(examples['text'], truncation=True, padding='max_length', max_length=Config.MAX_LENGTH)
|
| 33 |
+
|
| 34 |
+
# Tokenize the entire dataset
|
| 35 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
| 36 |
+
|
| 37 |
+
# Set format for PyTorch
|
| 38 |
+
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
| 39 |
+
|
| 40 |
+
return tokenized_dataset
|
| 41 |
+
|
| 42 |
+
def fine_tune(self, datasets):
|
| 43 |
+
"""
|
| 44 |
+
Fine-tune the model with the preprocessed datasets.
|
| 45 |
+
"""
|
| 46 |
+
# Load datasets (after pre-processing)
|
| 47 |
+
dataset_dict = DatasetDict({
|
| 48 |
+
"train": datasets['train'],
|
| 49 |
+
"validation": datasets['validation'],
|
| 50 |
+
})
|
| 51 |
+
|
| 52 |
+
# Training arguments
|
| 53 |
+
training_args = TrainingArguments(
|
| 54 |
+
output_dir=Config.OUTPUT_DIR,
|
| 55 |
+
evaluation_strategy="epoch",
|
| 56 |
+
learning_rate=Config.LEARNING_RATE,
|
| 57 |
+
per_device_train_batch_size=Config.BATCH_SIZE,
|
| 58 |
+
per_device_eval_batch_size=Config.BATCH_SIZE,
|
| 59 |
+
weight_decay=Config.WEIGHT_DECAY,
|
| 60 |
+
save_total_limit=3,
|
| 61 |
+
num_train_epochs=Config.NUM_EPOCHS,
|
| 62 |
+
logging_dir=Config.LOGGING_DIR,
|
| 63 |
+
load_best_model_at_end=True
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Trainer
|
| 67 |
+
trainer = Trainer(
|
| 68 |
+
model=self.model,
|
| 69 |
+
args=training_args,
|
| 70 |
+
train_dataset=dataset_dict['train'],
|
| 71 |
+
eval_dataset=dataset_dict['validation'],
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Fine-tuning
|
| 75 |
+
trainer.train()
|
| 76 |
+
|
| 77 |
def predict(self, prompt):
|
| 78 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=Config.MAX_LENGTH)
|
| 79 |
inputs = {key: value.to(Config.DEVICE) for key, value in inputs.items()}
|
| 80 |
|
| 81 |
outputs = self.model.generate(**inputs, max_length=Config.MAX_LENGTH)
|
| 82 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 83 |
+
|
| 84 |
+
def load_and_process_datasets(self):
|
| 85 |
+
"""
|
| 86 |
+
Loads and preprocesses the datasets for fine-tuning.
|
| 87 |
+
"""
|
| 88 |
+
# Load your OSINT and WhiteRabbitNeo datasets
|
| 89 |
+
osint_datasets = [
|
| 90 |
+
'gonferspanish/OSINT',
|
| 91 |
+
'Inforensics/missing-persons-clue-analysis-osint',
|
| 92 |
+
'jester6136/osint',
|
| 93 |
+
'originalbox/osint'
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
wrn_datasets = [
|
| 97 |
+
'WhiteRabbitNeo/WRN-Chapter-2',
|
| 98 |
+
'WhiteRabbitNeo/WRN-Chapter-1',
|
| 99 |
+
'WhiteRabbitNeo/Code-Functions-Level-Cyber'
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
# Combine all datasets into one for training
|
| 103 |
+
combined_datasets = []
|
| 104 |
+
|
| 105 |
+
# Load and preprocess OSINT datasets
|
| 106 |
+
for dataset_name in osint_datasets:
|
| 107 |
+
dataset = load_dataset(dataset_name)
|
| 108 |
+
processed_data = self.preprocess_data(dataset['train']) # Assuming the 'train' split exists
|
| 109 |
+
combined_datasets.append(processed_data)
|
| 110 |
+
|
| 111 |
+
# Load and preprocess WhiteRabbitNeo datasets
|
| 112 |
+
for dataset_name in wrn_datasets:
|
| 113 |
+
dataset = load_dataset(dataset_name)
|
| 114 |
+
processed_data = self.preprocess_data(dataset['train']) # Assuming the 'train' split exists
|
| 115 |
+
combined_datasets.append(processed_data)
|
| 116 |
+
|
| 117 |
+
# Combine all preprocessed datasets
|
| 118 |
+
full_dataset = DatasetDict()
|
| 119 |
+
full_dataset['train'] = Dataset.from_dict(pd.concat([d['train'] for d in combined_datasets]))
|
| 120 |
+
full_dataset['validation'] = Dataset.from_dict(pd.concat([d['validation'] for d in combined_datasets]))
|
| 121 |
+
|
| 122 |
+
return full_dataset
|
| 123 |
+
|
| 124 |
+
if __name__ == "__main__":
|
| 125 |
+
# Create the model object
|
| 126 |
+
model = CyberAttackDetectionModel()
|
| 127 |
+
|
| 128 |
+
# Load and preprocess datasets
|
| 129 |
+
preprocessed_datasets = model.load_and_process_datasets()
|
| 130 |
+
|
| 131 |
+
# Fine-tune the model
|
| 132 |
+
model.fine_tune(preprocessed_datasets)
|
| 133 |
+
|
| 134 |
+
# Example prediction
|
| 135 |
+
prompt = "A network scan reveals an open port 22 with an outdated SSH service."
|
| 136 |
+
print(model.predict(prompt))
|