Update README.md
Browse files
README.md
CHANGED
|
@@ -373,8 +373,8 @@ import torch
|
|
| 373 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 374 |
|
| 375 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
|
| 376 |
-
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-
|
| 377 |
-
model_ort =
|
| 378 |
|
| 379 |
# Sentences we want sentence embeddings for
|
| 380 |
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
@@ -382,25 +382,25 @@ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropo
|
|
| 382 |
# Tokenize sentences
|
| 383 |
encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
|
| 384 |
|
| 385 |
-
scores_ort = model_ort(**
|
| 386 |
# Compute token embeddings
|
| 387 |
with torch.inference_mode():
|
| 388 |
-
scores = model_ort(**
|
| 389 |
|
| 390 |
# scores and scores_ort are identical
|
| 391 |
```
|
| 392 |
#### Usage reranker with infinity
|
| 393 |
|
| 394 |
-
Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
|
| 395 |
```python
|
| 396 |
import asyncio
|
| 397 |
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
|
| 398 |
|
| 399 |
-
query='what is panda?'
|
| 400 |
docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."]
|
| 401 |
|
| 402 |
engine = AsyncEmbeddingEngine.from_args(
|
| 403 |
-
EngineArgs(model_name_or_path = "BAAI/bge-
|
| 404 |
))
|
| 405 |
|
| 406 |
async def main():
|
|
|
|
| 373 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 374 |
|
| 375 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
|
| 376 |
+
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
| 377 |
+
model_ort = ORTModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base', file_name="onnx/model.onnx")
|
| 378 |
|
| 379 |
# Sentences we want sentence embeddings for
|
| 380 |
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
|
|
| 382 |
# Tokenize sentences
|
| 383 |
encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
|
| 384 |
|
| 385 |
+
scores_ort = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
|
| 386 |
# Compute token embeddings
|
| 387 |
with torch.inference_mode():
|
| 388 |
+
scores = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
|
| 389 |
|
| 390 |
# scores and scores_ort are identical
|
| 391 |
```
|
| 392 |
#### Usage reranker with infinity
|
| 393 |
|
| 394 |
+
Its also possible to deploy the onnx/torch files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
|
| 395 |
```python
|
| 396 |
import asyncio
|
| 397 |
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
|
| 398 |
|
| 399 |
+
query='what is a panda?'
|
| 400 |
docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."]
|
| 401 |
|
| 402 |
engine = AsyncEmbeddingEngine.from_args(
|
| 403 |
+
EngineArgs(model_name_or_path = "BAAI/bge-reranker-base", device="cpu", engine="torch" # or engine="optimum" for onnx
|
| 404 |
))
|
| 405 |
|
| 406 |
async def main():
|